Plots List
Plots
This endpoint handles manipulation of Plotly plot files.
Reference
Authorization
Any user with or without a Plotly account may view public plots. For private plots, see authentication.
Actions
list
Listing all public plots can be done via a GET request to this endpoint.
By default, plots will be listed in order of date created. The order_by
query parameter is accepted at this endpoint. Currently, only ordering by
views
is supported. It is possible to filter the plots by quality
with min_quality
or max_quality
as query parameter.
Example:
// GET https://api.plotly.com/v2/plots/ ---> 200
// GET https://api.plotly.com/v2/plots/?order_by=-views ---> 200
// GET https://api.plotly.com/v2/plots/?min_quality=5 ---> 200
// GET https://api.plotly.com/v2/plots/?max_quality=5 ---> 200
feed
Listing all handpicked feed plots can be done via a GET request to this endpoint. By default, plots will be listed in a random order.
Example:
// GET https://api.plotly.com/v2/plots/feed ---> 200
create
You can create new plot resources here. The only required field is 'figure'. Currently, the figure is restricted to only contain references to grid data. That is, this will fail if raw data arrays are passed in. To create and manipulate underlying grids for plots, see the grids endpoint.
Example:
// This fails because a figure field is required.
// POST https://api.plotly.com/v2/plots ---> 400 Bad Request
{}
// This fails because the figure has raw data
//POST https://api.plotly.com/v2/plots ---> 400 Bad Request
{
"figure": {"data": [{"y": ['this', 'is', 'raw', 'data']}]}
}
// This succeeds because the figure has src keys, not raw data.
//POST https://api.plotly.com/v2/plots ---> 200 OK
{
"figure": {"data": [{"ysrc": "sven:88:u8nd62"}]}
}
When creating a grid, you can optionally specify a source_fid to specify where a plot has come from:
- source_fid: the fid of a plot that was copied (and presumably edited) to produce this one
detail
There is a lot of meta information stored about plot files including filename, title, share_url, and content_url to name a few.
This information can only be reached with a GET to this endpoint.
Example:
// GET https://api.plotly.com/v2/plots/iheartgraphs:90
content
The contents of a plot can be downloaded via the content resource. The plot
content contains referenced grid/column data by default. If you wish to
return the raw grid/column data, the inline_data=true
query must be included
in the request url. The Content-Type header will be appropriately set for the
response body.
Alternatively, you can set ?map_data=unreadable
to append a mapping of
sources to data that belongs to grids which are unreadable for the
requestor. This is useful when you have read access to another users plot,
but that plot contains grid references which you don't have access to.
Examples:
// Returns referenced grid/column data
// GET https://api.plotly.com/v2/plots/iheartgraphs:90/content ---> 200 OK
// Returns full grid/column data
// GET https://api.plotly.com/v2/plots/iheartgraphs:90/content?inline_data=true ---> 200 OK
// Returns full grid/column data when requestor doesn't have permission
// to read the referenced grid.
// GET https://api.plotly.com/v2/plots/iheartgraphs:90/content?map_data=unreadable ---> 200 OK
GET /v2/plots?cursor=cD0yMDI0LTA0LTEwKzEzJTNBMjclM0E0OS4wMzg3MzQlMkIwMCUzQTAw&format=api
https://api.plot.ly/v2/plots?cursor=cD0yMDI0LTA0LTEwKzExJTNBMDYlM0EzMC41NzIxNzIlMkIwMCUzQTAw&format=api", "previous": "https://api.plot.ly/v2/plots?cursor=cj0xJnA9MjAyNC0wNC0xMCsxMyUzQTI3JTNBNDUuNDU3MDM4JTJCMDAlM0EwMA%3D%3D&format=api", "results": [ { "creation_time": "2024-04-10T13:27:45.457038Z", "comments": { "results": [], "count": 0 }, "parented": true, "embed_url": "https://chart-studio.plotly.com/~gbs24/676.embed", "fid": "gbs24:676", "filename": "PartA_Old_Type250", "filetype": "plot", "img_url": "https://storage.googleapis.com/plotly-prod-images/gbs24/676/9_BJV7AFBIE4XKKT66UPZJ3ANRRFYYG4.png", "image_urls": { "default": "https://storage.googleapis.com/plotly-prod-images/gbs24/676/2_ETDGXWI60MPRHV5G1RD0QGGZNZDWPK.png", "block-thumb": "https://storage.googleapis.com/plotly-prod-images/gbs24/676/8_QCIQCSIV6S88BLAJU8CDT3AZU9P7QK.png", "list-thumb": "https://storage.googleapis.com/plotly-prod-images/gbs24/676/9_BJV7AFBIE4XKKT66UPZJ3ANRRFYYG4.png" }, "api_urls": { "files": "https://api.plotly.com/v2/files/gbs24:676", "plots": "https://api.plotly.com/v2/plots/gbs24:676", "parent": "https://api.plotly.com/v2/folders/home?user=gbs24" }, "owner": "gbs24", "parent": -1, "preview": "", "referencers": [], "references": [], "title": "", "views": 2, "web_url": "https://chart-studio.plotly.com/~gbs24/676/", "world_readable": true, "date_modified": "2024-04-10T13:27:45.467Z", "stars": { "results": [], "count": 0 }, "collaborators": { "results": [], "count": 0 }, "subfolder_count": null, "refresh_interval": null, "organize_view_url": "https://chart-studio.plotly.com/~gbs24/676/", "current_user_permission": "read", "is_theme": null, "is_template": null, "autosize": true, "caption": "", "figure": { "data": [ { "line": { "color": "rgba(31,119,180,1)" }, "type": "contour", "xsrc": "gbs24:675:67a2de", "ysrc": "gbs24:675:df3e66", "zsrc": "gbs24:675:421796", "frame": null, "xaxis": "x", "yaxis": "y", "colorbar": { "y": 1, "len": 0.5, "title": "conc", "lenmode": "fraction", "ticklen": 2, "yanchor": "top" }, "showscale": true, "colorscale": "Jet" } ], "layout": { "scene": { "zaxis": { "title": "conc" } }, "xaxis": { "title": "x", "domain": [ 0, 1 ], "automargin": true }, "yaxis": { "title": "y", "domain": [ 0, 1 ], "automargin": true }, "legend": { "y": 0.5, "yanchor": "top" }, "margin": { "b": 40, "l": 60, "r": 10, "t": 25 }, "hovermode": "closest", "showlegend": false } }, "height": null, "width": null, "user": { "profile_url": "https://chart-studio.plotly.com/~gbs24", "avatar_url": "https://storage.googleapis.com/plotly-prod-profiles/30.jpg", "background_url": "https://storage.googleapis.com/plotly-prod-profiles/bg-1.jpg", "bio": "", "nickname": "", "website": "", "stream_tokens": null, "feature_set_id": null, "csrf_token": null, "date_joined": "2019-05-28 09:57:46", "mapbox_access_tokens": null, "has_password": null, "username": "gbs24", "email": null, "is_active": null, "readonly": null, "is_dash_creator": null, "dash_created_count": null, "is_chart_creator": null, "charts_created_count": null } }, { "creation_time": "2024-04-10T13:27:42.041314Z", "comments": { "results": [], "count": 0 }, "parented": true, "embed_url": "https://chart-studio.plotly.com/~gbs24/674.embed", "fid": "gbs24:674", "filename": "PartA_New_Type249", "filetype": "plot", "img_url": "https://storage.googleapis.com/plotly-prod-images/gbs24/674/9_K53XO9AI286DMFWGCL6MF0NC66CMG9.png", "image_urls": { "default": "https://storage.googleapis.com/plotly-prod-images/gbs24/674/2_FE7E6PONO4BNLAJ6TVM7FG0RQ9HJSC.png", "block-thumb": "https://storage.googleapis.com/plotly-prod-images/gbs24/674/8_WSV2I8OCIQ2MAWWO3OWYDDYNVXEIW2.png", "list-thumb": "https://storage.googleapis.com/plotly-prod-images/gbs24/674/9_K53XO9AI286DMFWGCL6MF0NC66CMG9.png" }, "api_urls": { "files": "https://api.plotly.com/v2/files/gbs24:674", "plots": "https://api.plotly.com/v2/plots/gbs24:674", "parent": "https://api.plotly.com/v2/folders/home?user=gbs24" }, "owner": "gbs24", "parent": -1, "preview": "", "referencers": [], "references": [], "title": "", "views": 4, "web_url": "https://chart-studio.plotly.com/~gbs24/674/", "world_readable": true, "date_modified": "2024-04-10T13:27:42.050Z", "stars": { "results": [], "count": 0 }, "collaborators": { "results": [], "count": 0 }, "subfolder_count": null, "refresh_interval": null, "organize_view_url": "https://chart-studio.plotly.com/~gbs24/674/", "current_user_permission": "read", "is_theme": null, "is_template": null, "autosize": true, "caption": "", "figure": { "data": [ { "line": { "color": "rgba(31,119,180,1)" }, "type": "contour", "xsrc": "gbs24:673:08146b", "ysrc": "gbs24:673:c65814", "zsrc": "gbs24:673:dd6cbe", "frame": null, "xaxis": "x", "yaxis": "y", "colorbar": { "y": 1, "len": 0.5, "title": "conc", "lenmode": "fraction", "ticklen": 2, "yanchor": "top" }, "showscale": true, "colorscale": "Jet" } ], "layout": { "scene": { "zaxis": { "title": "conc" } }, "xaxis": { "title": "x", "domain": [ 0, 1 ], "automargin": true }, "yaxis": { "title": "y", "domain": [ 0, 1 ], "automargin": true }, "legend": { "y": 0.5, "yanchor": "top" }, "margin": { "b": 40, "l": 60, "r": 10, "t": 25 }, "hovermode": "closest", "showlegend": false } }, "height": null, "width": null, "user": { "profile_url": "https://chart-studio.plotly.com/~gbs24", "avatar_url": "https://storage.googleapis.com/plotly-prod-profiles/30.jpg", "background_url": "https://storage.googleapis.com/plotly-prod-profiles/bg-1.jpg", "bio": "", "nickname": "", "website": "", "stream_tokens": null, "feature_set_id": null, "csrf_token": null, "date_joined": "2019-05-28 09:57:46", "mapbox_access_tokens": null, "has_password": null, "username": "gbs24", "email": null, "is_active": null, "readonly": null, "is_dash_creator": null, "dash_created_count": null, "is_chart_creator": null, "charts_created_count": null } }, { "creation_time": "2024-04-10T13:27:38.533230Z", "comments": { "results": [], "count": 0 }, "parented": true, "embed_url": "https://chart-studio.plotly.com/~gbs24/672.embed", "fid": "gbs24:672", "filename": "PartA_Old_Type249", "filetype": "plot", "img_url": "https://storage.googleapis.com/plotly-prod-images/gbs24/672/9_IY9B66YS9PF6W65H4WVJQTTRYG0UTQ.png", "image_urls": { "default": "https://storage.googleapis.com/plotly-prod-images/gbs24/672/2_MP73V61AJO74LV50UTOPB5NYQQZ74K.png", "block-thumb": "https://storage.googleapis.com/plotly-prod-images/gbs24/672/8_WWMX2T3H1PYYFBAPK8JHDFP2S48IDH.png", "list-thumb": "https://storage.googleapis.com/plotly-prod-images/gbs24/672/9_IY9B66YS9PF6W65H4WVJQTTRYG0UTQ.png" }, "api_urls": { "files": "https://api.plotly.com/v2/files/gbs24:672", "plots": "https://api.plotly.com/v2/plots/gbs24:672", "parent": "https://api.plotly.com/v2/folders/home?user=gbs24" }, "owner": "gbs24", "parent": -1, "preview": "", "referencers": [], "references": [], "title": "", "views": 2, "web_url": "https://chart-studio.plotly.com/~gbs24/672/", "world_readable": true, "date_modified": "2024-04-10T13:27:38.542Z", "stars": { "results": [], "count": 0 }, "collaborators": { "results": [], "count": 0 }, "subfolder_count": null, "refresh_interval": null, "organize_view_url": "https://chart-studio.plotly.com/~gbs24/672/", "current_user_permission": "read", "is_theme": null, "is_template": null, "autosize": true, "caption": "", "figure": { "data": [ { "line": { "color": "rgba(31,119,180,1)" }, "type": "contour", "xsrc": "gbs24:671:e9aa3b", "ysrc": "gbs24:671:90e0e4", "zsrc": "gbs24:671:28d991", "frame": null, "xaxis": "x", "yaxis": "y", "colorbar": { "y": 1, "len": 0.5, "title": "conc", "lenmode": "fraction", "ticklen": 2, "yanchor": "top" }, "showscale": true, "colorscale": "Jet" } ], "layout": { "scene": { "zaxis": { "title": "conc" } }, "xaxis": { "title": "x", "domain": [ 0, 1 ], "automargin": true }, "yaxis": { "title": "y", "domain": [ 0, 1 ], "automargin": true }, "legend": { "y": 0.5, "yanchor": "top" }, "margin": { "b": 40, "l": 60, "r": 10, "t": 25 }, "hovermode": "closest", "showlegend": false } }, "height": null, "width": null, "user": { "profile_url": "https://chart-studio.plotly.com/~gbs24", "avatar_url": "https://storage.googleapis.com/plotly-prod-profiles/30.jpg", "background_url": "https://storage.googleapis.com/plotly-prod-profiles/bg-1.jpg", "bio": "", "nickname": "", "website": "", "stream_tokens": null, "feature_set_id": null, "csrf_token": null, "date_joined": "2019-05-28 09:57:46", "mapbox_access_tokens": null, "has_password": null, "username": "gbs24", "email": null, "is_active": null, "readonly": null, "is_dash_creator": null, "dash_created_count": null, "is_chart_creator": null, "charts_created_count": null } }, { "creation_time": "2024-04-10T13:01:15.951726Z", "comments": { "results": [], "count": 0 }, "parented": true, "embed_url": "https://chart-studio.plotly.com/~DaebangStn/2.embed", "fid": "DaebangStn:2", "filename": "Plot 2", "filetype": "plot", "img_url": "https://storage.googleapis.com/plotly-prod-images/DaebangStn/2/9_XAEVKNKCWOFTB8GUQX9K6UGT92J3Q2.png", "image_urls": { "default": "https://storage.googleapis.com/plotly-prod-images/DaebangStn/2/2_B1EINO2EGH2PIVLP0OR7897UHF7TG5.png", "block-thumb": "https://storage.googleapis.com/plotly-prod-images/DaebangStn/2/8_C45JSX0UDV6H7JROUJ6EZOSMWG00T6.png", "list-thumb": "https://storage.googleapis.com/plotly-prod-images/DaebangStn/2/9_XAEVKNKCWOFTB8GUQX9K6UGT92J3Q2.png" }, "api_urls": { "files": "https://api.plotly.com/v2/files/DaebangStn:2", "plots": "https://api.plotly.com/v2/plots/DaebangStn:2", "parent": "https://api.plotly.com/v2/folders/home?user=DaebangStn" }, "owner": "DaebangStn", "parent": -1, "preview": "", "referencers": [], "references": [], "title": "", "views": 3, "web_url": "https://chart-studio.plotly.com/~DaebangStn/2/", "world_readable": true, "date_modified": "2024-04-10T13:06:46.005Z", "stars": { "results": [], "count": 0 }, "collaborators": { "results": [], "count": 0 }, "subfolder_count": null, "refresh_interval": null, "organize_view_url": "https://chart-studio.plotly.com/~DaebangStn/2/", "current_user_permission": "read", "is_theme": null, "is_template": false, "autosize": true, "caption": "", "figure": { "data": [ { "meta": { "columnNames": { "x": "A", "y": "B" } }, "mode": "lines", "name": "AMP ref", "type": "scatter", "xsrc": "DaebangStn:0:db5078", "ysrc": "DaebangStn:0:0eb76e", "xaxis": "x2", "yaxis": "y2", "showlegend": true, "connectgaps": false }, { "meta": { "columnNames": { "x": "A", "y": "B" } }, "mode": "lines", "name": "MINE", "type": "scatter", "xsrc": "DaebangStn:1:b9f27c", "ysrc": "DaebangStn:1:410884", "xaxis": "x2", "yaxis": "y2", "showlegend": true, "stackgroup": null } ], "frames": [], "layout": { "legend": { "x": 0.020000000000000018, "y": 0.98, "font": { "size": 24 }, "title": { "font": { "size": 12 }, "text": "<br>" }, "yanchor": "middle", "orientation": "h" }, "xaxis2": { "side": "bottom", "type": "linear", "range": [ 0, 78249984 ], "title": { "font": { "size": 20 }, "text": "<b>Number of Sample</b>" }, "anchor": "y2", "domain": [ 0, 0.375 ], "autorange": true }, "yaxis2": { "side": "left", "type": "linear", "range": [ -45.74186346265991, 1266.6176073286242 ], "title": { "font": { "size": 20 }, "text": "<b>Episode Length</b>" }, "anchor": "x2", "domain": [ 0, 1 ], "autorange": true }, "autosize": true, "dragmode": "pan", "template": { "data": { "bar": [ { "type": "bar", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "table": [ { "type": "table", "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } } } ], "carpet": [ { "type": "carpet", "aaxis": { "gridcolor": "#C8D4E3", "linecolor": "#C8D4E3", "endlinecolor": "#2a3f5f", "minorgridcolor": "#C8D4E3", "startlinecolor": "#2a3f5f" }, "baxis": { "gridcolor": "#C8D4E3", "linecolor": "#C8D4E3", "endlinecolor": "#2a3f5f", "minorgridcolor": "#C8D4E3", "startlinecolor": "#2a3f5f" } } ], "mesh3d": [ { "type": "mesh3d", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "contour": [ { "type": "contour", "colorbar": { "ticks": "", "outlinewidth": 0 }, "autocolorscale": true } ], "heatmap": [ { "type": "heatmap", "colorbar": { "ticks": "", "outlinewidth": 0 }, "autocolorscale": true } ], "scatter": [ { "type": "scatter", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "surface": [ { "type": "surface", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "heatmapgl": [ { "type": "heatmapgl", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "histogram": [ { "type": "histogram", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "parcoords": [ { "line": { "colorbar": { "ticks": "", "outlinewidth": 0 } }, "type": "parcoords" } ], "scatter3d": [ { "type": "scatter3d", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scattergl": [ { "type": "scattergl", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "choropleth": [ { "type": "choropleth", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "scattergeo": [ { "type": "scattergeo", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "histogram2d": [ { "type": "histogram2d", "colorbar": { "ticks": "", "outlinewidth": 0 }, "autocolorscale": true } ], "scatterpolar": [ { "type": "scatterpolar", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "contourcarpet": [ { "type": "contourcarpet", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "scattercarpet": [ { "type": "scattercarpet", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scattermapbox": [ { "type": "scattermapbox", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scatterpolargl": [ { "type": "scatterpolargl", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scatterternary": [ { "type": "scatterternary", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "histogram2dcontour": [ { "type": "histogram2dcontour", "colorbar": { "ticks": "", "outlinewidth": 0 }, "autocolorscale": true } ] }, "layout": { "geo": { "bgcolor": "white", "showland": true, "lakecolor": "white", "landcolor": "white", "showlakes": true, "subunitcolor": "#C8D4E3" }, "font": { "color": "#2a3f5f" }, "polar": { "bgcolor": "white", "radialaxis": { "ticks": "", "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8" }, "angularaxis": { "ticks": "", "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8" } }, "scene": { "xaxis": { "ticks": "", "gridcolor": "#DFE8F3", "gridwidth": 2, "linecolor": "#EBF0F8", "zerolinecolor": "#EBF0F8", "showbackground": true, "backgroundcolor": "white" }, "yaxis": { "ticks": "", "gridcolor": "#DFE8F3", "gridwidth": 2, "linecolor": "#EBF0F8", "zerolinecolor": "#EBF0F8", "showbackground": true, "backgroundcolor": "white" }, "zaxis": { "ticks": "", "gridcolor": "#DFE8F3", "gridwidth": 2, "linecolor": "#EBF0F8", "zerolinecolor": "#EBF0F8", "showbackground": true, "backgroundcolor": "white" } }, "title": { "x": 0.05 }, "xaxis": { "ticks": "", "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8", "automargin": true, "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 }, "yaxis": { "ticks": "", "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8", "automargin": true, "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 }, "ternary": { "aaxis": { "ticks": "", "gridcolor": "#DFE8F3", "linecolor": "#A2B1C6" }, "baxis": { "ticks": "", "gridcolor": "#DFE8F3", "linecolor": "#A2B1C6" }, "caxis": { "ticks": "", "gridcolor": "#DFE8F3", "linecolor": "#A2B1C6" }, "bgcolor": "white" }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#19d3f3", "#e763fa", "#fecb52", "#ffa15a", "#ff6692", "#b6e880" ], "hovermode": "closest", "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0508b8" ], [ 0.0893854748603352, "#1910d8" ], [ 0.1787709497206704, "#3c19f0" ], [ 0.2681564245810056, "#6b1cfb" ], [ 0.3575418994413408, "#981cfd" ], [ 0.44692737430167595, "#bf1cfd" ], [ 0.5363128491620112, "#dd2bfd" ], [ 0.6256983240223464, "#f246fe" ], [ 0.7150837988826816, "#fc67fd" ], [ 0.8044692737430168, "#fe88fc" ], [ 0.8938547486033519, "#fea5fd" ], [ 0.9832402234636871, "#febefe" ], [ 1, "#fec3fe" ] ], "sequentialminus": [ [ 0, "#0508b8" ], [ 0.0893854748603352, "#1910d8" ], [ 0.1787709497206704, "#3c19f0" ], [ 0.2681564245810056, "#6b1cfb" ], [ 0.3575418994413408, "#981cfd" ], [ 0.44692737430167595, "#bf1cfd" ], [ 0.5363128491620112, "#dd2bfd" ], [ 0.6256983240223464, "#f246fe" ], [ 0.7150837988826816, "#fc67fd" ], [ 0.8044692737430168, "#fe88fc" ], [ 0.8938547486033519, "#fea5fd" ], [ 0.9832402234636871, "#febefe" ], [ 1, "#fec3fe" ] ] }, "plot_bgcolor": "white", "paper_bgcolor": "white", "shapedefaults": { "line": { "width": 0 }, "opacity": 0.4, "fillcolor": "#506784" }, "annotationdefaults": { "arrowhead": 0, "arrowcolor": "#506784", "arrowwidth": 1 } }, "themeRef": "PLOTLY_WHITE" }, "hovermode": "closest", "showlegend": true } }, "height": null, "width": null, "user": { "profile_url": "https://chart-studio.plotly.com/~DaebangStn", "avatar_url": "https://storage.googleapis.com/plotly-prod-profiles/79.jpg", "background_url": "https://storage.googleapis.com/plotly-prod-profiles/bg-13.jpg", "bio": "", "nickname": "", "website": "", "stream_tokens": null, "feature_set_id": null, "csrf_token": null, "date_joined": "2024-04-10 13:00:58", "mapbox_access_tokens": null, "has_password": null, "username": "DaebangStn", "email": null, "is_active": null, "readonly": null, "is_dash_creator": null, "dash_created_count": null, "is_chart_creator": null, "charts_created_count": null } }, { "creation_time": "2024-04-10T12:28:21.375076Z", "comments": { "results": [], "count": 0 }, "parented": true, "embed_url": "https://chart-studio.plotly.com/~martmartmart/1.embed", "fid": "martmartmart:1", "filename": "Plot 1", "filetype": "plot", "img_url": "https://storage.googleapis.com/plotly-prod-images/martmartmart/1/9_E4J7101JNQAHJ49FPH2OVBOF336K88.png", "image_urls": { "default": "https://storage.googleapis.com/plotly-prod-images/martmartmart/1/2_1MESHHC9QSFXABKDP6GGV4M45XLT32.png", "block-thumb": "https://storage.googleapis.com/plotly-prod-images/martmartmart/1/8_70UHUNXU5XGAJW1GCAV4U1QC1PO05C.png", "list-thumb": "https://storage.googleapis.com/plotly-prod-images/martmartmart/1/9_E4J7101JNQAHJ49FPH2OVBOF336K88.png" }, "api_urls": { "files": "https://api.plotly.com/v2/files/martmartmart:1", "plots": "https://api.plotly.com/v2/plots/martmartmart:1", "parent": "https://api.plotly.com/v2/folders/home?user=martmartmart" }, "owner": "martmartmart", "parent": -1, "preview": "", "referencers": [], "references": [], "title": "", "views": 3, "web_url": "https://chart-studio.plotly.com/~martmartmart/1/", "world_readable": true, "date_modified": "2024-04-10T12:28:21.387Z", "stars": { "results": [], "count": 0 }, "collaborators": { "results": [], "count": 0 }, "subfolder_count": null, "refresh_interval": null, "organize_view_url": "https://chart-studio.plotly.com/~martmartmart/1/", "current_user_permission": "read", "is_theme": null, "is_template": false, "autosize": true, "caption": "", "figure": { "data": [ { "meta": { "columnNames": { "x": "A", "y": "B" } }, "mode": "lines", "type": "scatter", "xsrc": "martmartmart:0:e4bb9c", "ysrc": "martmartmart:0:6c5bd2" } ], "frames": [], "layout": { "title": { "text": "Trial 1" }, "xaxis": { "type": "linear", "range": [ 1, 10 ], "title": { "text": "total H2SO4 (mL)" }, "autorange": true }, "yaxis": { "type": "linear", "range": [ -77.61111111111114, 7514.611111111111 ], "title": { "text": "conductivity (µS/cm)" }, "autorange": true }, "shapes": [ { "x0": 3.8983516483516483, "x1": 4.101648351648351, "y0": 796.2737047898338, "y1": 1163.6392961876834, "line": { "color": "#444444" }, "opacity": 1, "fillcolor": "rgb(237, 4, 34)" } ], "autosize": true, "template": { "data": { "bar": [ { "type": "bar", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "table": [ { "type": "table", "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } } } ], "carpet": [ { "type": "carpet", "aaxis": { "gridcolor": "#C8D4E3", "linecolor": "#C8D4E3", "endlinecolor": "#2a3f5f", "minorgridcolor": "#C8D4E3", "startlinecolor": "#2a3f5f" }, "baxis": { "gridcolor": "#C8D4E3", "linecolor": "#C8D4E3", "endlinecolor": "#2a3f5f", "minorgridcolor": "#C8D4E3", "startlinecolor": "#2a3f5f" } } ], "mesh3d": [ { "type": "mesh3d", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "contour": [ { "type": "contour", "colorbar": { "ticks": "", "outlinewidth": 0 }, "autocolorscale": true } ], "heatmap": [ { "type": "heatmap", "colorbar": { "ticks": "", "outlinewidth": 0 }, "autocolorscale": true } ], "scatter": [ { "type": "scatter", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "surface": [ { "type": "surface", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "heatmapgl": [ { "type": "heatmapgl", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "histogram": [ { "type": "histogram", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "parcoords": [ { "line": { "colorbar": { "ticks": "", "outlinewidth": 0 } }, "type": "parcoords" } ], "scatter3d": [ { "type": "scatter3d", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scattergl": [ { "type": "scattergl", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "choropleth": [ { "type": "choropleth", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "scattergeo": [ { "type": "scattergeo", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "histogram2d": [ { "type": "histogram2d", "colorbar": { "ticks": "", "outlinewidth": 0 }, "autocolorscale": true } ], "scatterpolar": [ { "type": "scatterpolar", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "contourcarpet": [ { "type": "contourcarpet", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "scattercarpet": [ { "type": "scattercarpet", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scattermapbox": [ { "type": "scattermapbox", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scatterpolargl": [ { "type": "scatterpolargl", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scatterternary": [ { "type": "scatterternary", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "histogram2dcontour": [ { "type": "histogram2dcontour", "colorbar": { "ticks": "", "outlinewidth": 0 }, "autocolorscale": true } ] }, "layout": { "geo": { "bgcolor": "white", "showland": true, "lakecolor": "white", "landcolor": "white", "showlakes": true, "subunitcolor": "#C8D4E3" }, "font": { "color": "#2a3f5f" }, "polar": { "bgcolor": "white", "radialaxis": { "ticks": "", "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8" }, "angularaxis": { "ticks": "", "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8" } }, "scene": { "xaxis": { "ticks": "", "gridcolor": "#DFE8F3", "gridwidth": 2, "linecolor": "#EBF0F8", "zerolinecolor": "#EBF0F8", "showbackground": true, "backgroundcolor": "white" }, "yaxis": { "ticks": "", "gridcolor": "#DFE8F3", "gridwidth": 2, "linecolor": "#EBF0F8", "zerolinecolor": "#EBF0F8", "showbackground": true, "backgroundcolor": "white" }, "zaxis": { "ticks": "", "gridcolor": "#DFE8F3", "gridwidth": 2, "linecolor": "#EBF0F8", "zerolinecolor": "#EBF0F8", "showbackground": true, "backgroundcolor": "white" } }, "title": { "x": 0.05 }, "xaxis": { "ticks": "", "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8", "automargin": true, "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 }, "yaxis": { "ticks": "", "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8", "automargin": true, "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 }, "ternary": { "aaxis": { "ticks": "", "gridcolor": "#DFE8F3", "linecolor": "#A2B1C6" }, "baxis": { "ticks": "", "gridcolor": "#DFE8F3", "linecolor": "#A2B1C6" }, "caxis": { "ticks": "", "gridcolor": "#DFE8F3", "linecolor": "#A2B1C6" }, "bgcolor": "white" }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#19d3f3", "#e763fa", "#fecb52", "#ffa15a", "#ff6692", "#b6e880" ], "hovermode": "closest", "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0508b8" ], [ 0.0893854748603352, "#1910d8" ], [ 0.1787709497206704, "#3c19f0" ], [ 0.2681564245810056, "#6b1cfb" ], [ 0.3575418994413408, "#981cfd" ], [ 0.44692737430167595, "#bf1cfd" ], [ 0.5363128491620112, "#dd2bfd" ], [ 0.6256983240223464, "#f246fe" ], [ 0.7150837988826816, "#fc67fd" ], [ 0.8044692737430168, "#fe88fc" ], [ 0.8938547486033519, "#fea5fd" ], [ 0.9832402234636871, "#febefe" ], [ 1, "#fec3fe" ] ], "sequentialminus": [ [ 0, "#0508b8" ], [ 0.0893854748603352, "#1910d8" ], [ 0.1787709497206704, "#3c19f0" ], [ 0.2681564245810056, "#6b1cfb" ], [ 0.3575418994413408, "#981cfd" ], [ 0.44692737430167595, "#bf1cfd" ], [ 0.5363128491620112, "#dd2bfd" ], [ 0.6256983240223464, "#f246fe" ], [ 0.7150837988826816, "#fc67fd" ], [ 0.8044692737430168, "#fe88fc" ], [ 0.8938547486033519, "#fea5fd" ], [ 0.9832402234636871, "#febefe" ], [ 1, "#fec3fe" ] ] }, "plot_bgcolor": "white", "paper_bgcolor": "white", "shapedefaults": { "line": { "width": 0 }, "opacity": 0.4, "fillcolor": "#506784" }, "annotationdefaults": { "arrowhead": 0, "arrowcolor": "#506784", "arrowwidth": 1 } }, "themeRef": "PLOTLY_WHITE" }, "annotations": [ { "x": 3.9505494505494507, "y": 1180.3377321603127, "ax": -10, "ay": -30, "text": "Equivalence Point" } ] } }, "height": null, "width": null, "user": { "profile_url": "https://chart-studio.plotly.com/~martmartmart", "avatar_url": "https://storage.googleapis.com/plotly-prod-profiles/86.jpg", "background_url": "https://storage.googleapis.com/plotly-prod-profiles/bg-2.jpg", "bio": "", "nickname": "", "website": "", "stream_tokens": null, "feature_set_id": null, "csrf_token": null, "date_joined": "2024-04-10 12:28:01", "mapbox_access_tokens": null, "has_password": null, "username": "martmartmart", "email": null, "is_active": null, "readonly": null, "is_dash_creator": null, "dash_created_count": null, "is_chart_creator": null, "charts_created_count": null } }, { "creation_time": "2024-04-10T12:03:56.555031Z", "comments": { "results": [], "count": 0 }, "parented": true, "embed_url": "https://chart-studio.plotly.com/~masa1357/20.embed", "fid": "masa1357:20", "filename": "Grade distribution by cluster", "filetype": "plot", "img_url": "https://storage.googleapis.com/plotly-prod-images/masa1357/20/9_48D6D1EKBEXZDYLIDOVL2Q8KDF2572.png", "image_urls": { "default": "https://storage.googleapis.com/plotly-prod-images/masa1357/20/2_1K3FNNABECXQXACZN18JJ1DVJATQ7J.png", "block-thumb": "https://storage.googleapis.com/plotly-prod-images/masa1357/20/8_ZCJXNP3AX97HBDLW5TNQFXN2SUG7IW.png", "list-thumb": "https://storage.googleapis.com/plotly-prod-images/masa1357/20/9_48D6D1EKBEXZDYLIDOVL2Q8KDF2572.png" }, "api_urls": { "files": "https://api.plotly.com/v2/files/masa1357:20", "plots": "https://api.plotly.com/v2/plots/masa1357:20", "parent": "https://api.plotly.com/v2/folders/home?user=masa1357" }, "owner": "masa1357", "parent": -1, "preview": "", "referencers": [], "references": [], "title": "", "views": 14, "web_url": "https://chart-studio.plotly.com/~masa1357/20/", "world_readable": true, "date_modified": "2024-04-10T12:08:31.787Z", "stars": { "results": [], "count": 0 }, "collaborators": { "results": [], "count": 0 }, "subfolder_count": null, "refresh_interval": null, "organize_view_url": "https://chart-studio.plotly.com/~masa1357/20/", "current_user_permission": "read", "is_theme": null, "is_template": null, "autosize": true, "caption": "", "figure": { "data": [ { "name": "-1_グルーピング_logn_nlogn_br", "type": "bar", "xsrc": "masa1357:22:e3aab3", "ysrc": "masa1357:22:9bee84" }, { "name": "0_コモンズ_klogn_発見_ノード", "type": "bar", "xsrc": "masa1357:22:ff24a0", "ysrc": "masa1357:22:653e2f" }, { "name": "1_知識マップの作成_情報科学_情報_知識マップの作製", "type": "bar", "xsrc": "masa1357:22:d22d6c", "ysrc": "masa1357:22:9e960c" }, { "name": "2_バイ_完全性_en_機密性", "type": "bar", "xsrc": "masa1357:22:3a8ca6", "ysrc": "masa1357:22:081ae1" }, { "name": "3_計算_アルゴリズム_コンピュータ_問題", "type": "bar", "xsrc": "masa1357:22:57b419", "ysrc": "masa1357:22:9eadf6" }, { "name": "4_情報源符号化_エントロピー_情報源_が存在する", "type": "bar", "xsrc": "masa1357:22:57fd20", "ysrc": "masa1357:22:a9a5fa" }, { "name": "5_符号語同士がs_2k_ハミング距離_符号語同士が2t", "type": "bar", "xsrc": "masa1357:22:8deae5", "ysrc": "masa1357:22:1cb774" }, { "name": "6_パターン認識_ベクトル_画像処理_似ている", "type": "bar", "xsrc": "masa1357:22:b56b94", "ysrc": "masa1357:22:5fd404" }, { "name": "7_距離_類似度_似ている_遠い", "type": "bar", "xsrc": "masa1357:22:f3862d", "ysrc": "masa1357:22:df88fa" }, { "name": "8_2回_バブルソート_cf_選択ソート", "type": "bar", "xsrc": "masa1357:22:3d4e83", "ysrc": "masa1357:22:84142b" }, { "name": "9_xy_log2_情報量_曖昧さ", "type": "bar", "xsrc": "masa1357:22:5a9c94", "ysrc": "masa1357:22:0d3661" }, { "name": "10_離散時間フーリエ変換と離散フーリエ変換_離散時間フーリエ変換と離散フーリエ変換について_離散時間フーリエ変換_離散時間システム", "type": "bar", "xsrc": "masa1357:22:6d9060", "ysrc": "masa1357:22:018226" }, { "name": "11_z変換について_z変換の性質逆z変換_z変換の導入_z変換の性質と逆z変換", "type": "bar", "xsrc": "masa1357:22:5d7517", "ysrc": "masa1357:22:f6c035" }, { "name": "12_相関_統計的検定_差がない_ax", "type": "bar", "xsrc": "masa1357:22:4032dd", "ysrc": "masa1357:22:4144db" }, { "name": "13_ディジタル信号処理の概要_量子化_符号化_アナログ信号", "type": "bar", "xsrc": "masa1357:22:7467aa", "ysrc": "masa1357:22:df9832" }, { "name": "14_高速フーリエ変換_高速フーリエ変換について_高速フーリエ変換について学んだ_fft", "type": "bar", "xsrc": "masa1357:22:8b4c5e", "ysrc": "masa1357:22:68d65b" }, { "name": "15_期末テスト_テスト_確認テスト_テストでした", "type": "bar", "xsrc": "masa1357:22:e3694a", "ysrc": "masa1357:22:e4ab78" }, { "name": "16_弱いai_強いai_特化型ai_人工知能", "type": "bar", "xsrc": "masa1357:22:9f0934", "ysrc": "masa1357:22:49c5d6" }, { "name": "17_標本化定理_連続時間信号の標本化について_連続時間信号の標本化_hz", "type": "bar", "xsrc": "masa1357:22:cd5488", "ysrc": "masa1357:22:cb63c6" }, { "name": "18_周期信号のフーリエ級数表現_フーリエ変換_周期信号について主にフーリエ級数で表現する方法_周期信号はe", "type": "bar", "xsrc": "masa1357:22:55642a", "ysrc": "masa1357:22:6b8658" }, { "name": "19_フーリエ級数からフーリエ変換への拡張_フーリエ級数_最大公約数を表す_フーリエ級数複素フーリエ級数の求め方", "type": "bar", "xsrc": "masa1357:22:acac7a", "ysrc": "masa1357:22:c9d0d5" }, { "name": "20_著作権について_財産権_著作権_70年間著作物を守る", "type": "bar", "xsrc": "masa1357:22:4bd57b", "ysrc": "masa1357:22:960ec6" }, { "name": "21_離散時間信号z変換_離散時間信号とz変換について_離散時間信号とz変換_nt", "type": "bar", "xsrc": "masa1357:22:c23b08", "ysrc": "masa1357:22:643f76" }, { "name": "22_離散フーリエ変換_フーリエ変換_離散フーリエ変換について_フーリエ変換の復習", "type": "bar", "xsrc": "masa1357:22:b4b07a", "ysrc": "masa1357:22:0852c9" }, { "name": "23_マージソートと二分探索法について_二分探索法_2分探索について_今回の授業ではヒープソートとマージソートについて学習した", "type": "bar", "xsrc": "masa1357:22:b00ee2", "ysrc": "masa1357:22:d72888" }, { "name": "24_エッジ抽出_エッジ_文字_と白", "type": "bar", "xsrc": "masa1357:22:822665", "ysrc": "masa1357:22:0349fc" }, { "name": "25_brーmapを用いて振り返りを行った_第七回の大まかな復讐_シンプルな内容でわかりやすかった_全体を通してのまとめをおこなった", "type": "bar", "xsrc": "masa1357:22:98c070", "ysrc": "masa1357:22:a03c26" }, { "name": "26_ディジタルフィルタについて_ディジタルフィルタ_ディジタルフィルタの設計_フィルタ", "type": "bar", "xsrc": "masa1357:22:d6725d", "ysrc": "masa1357:22:d76a4e" }, { "name": "27_人工知能_ai_人工知能について_機械学習とは", "type": "bar", "xsrc": "masa1357:22:99f4b4", "ysrc": "masa1357:22:d9370f" }, { "name": "28_ガイダンス_ソートの大まかな概要_オリエンテーション_イントロダクション", "type": "bar", "xsrc": "masa1357:22:c79ea2", "ysrc": "masa1357:22:67197c" }, { "name": "29_nlogn_log_通りがけ順_どの節点の値も自分の親に格納された値以下である", "type": "bar", "xsrc": "masa1357:22:e3b882", "ysrc": "masa1357:22:9117b1" }, { "name": "30_改竄_捏造_を行ってはならないまた研究者には科学の進歩と社会の安全安心に貢献し所属する研究機関やクライエントの利益を守る責任がある_研究に携わる者の責任として公正で誠実な発表をする義務がある九州大学でもガイドラインなどが定められておりそれを遵守しながら研究を進めていかなければならない利益相反とは金銭の利益のせいで専門家などの客観的判断が失われること外部から許可なくネットワークにアクセスされることを防ぐために利用を制限するなどの方法がある", "type": "bar", "xsrc": "masa1357:22:b58b5f", "ysrc": "masa1357:22:ce2ac6" }, { "name": "31_非周期信号のフーリエ変換_非周期信号とフーリエ変換_t0を大きくし周期信号を非周期信号とみなす_非周期信号とフーリエ変換についてフーリエ変換の性質や代表的なフーリエ変換の紹介", "type": "bar", "xsrc": "masa1357:22:e761a8", "ysrc": "masa1357:22:416fc6" }, { "name": "32_差分方程式_2つの線形時不変システムが接続されたシステムの応答は接続が縦列か並列かで変わる_線形時不変システムにインパルス関数を加えた出力インパルス応答がわかると他の信号の場合の出力を求められる_離散時間システムは線形性と時不変性の性質を持っていること", "type": "bar", "xsrc": "masa1357:22:5b4706", "ysrc": "masa1357:22:a90132" }, { "name": "33_フーリエ級数について学んだ_これからの授業で何を学ぶかや計算とは何かについて例を用いて学んだ_今回の授業では数学的要素も混じった問題について取り上げておりより手短な計算で問題を解決することに注力したものでありました_エントロピーについて学んだ高校数学で確率を学んだが今回の授業はより実践的だった", "type": "bar", "xsrc": "masa1357:22:2a1f9b", "ysrc": "masa1357:22:9c32f6" }, { "name": "34_標本化について_標本化_標本化定理_サンプリングと標本化定理について", "type": "bar", "xsrc": "masa1357:22:a04b9a", "ysrc": "masa1357:22:08f2d3" }, { "name": "35_firの設計には窓関数が用いられる手順は次のとおりである①所望の振幅特性を求める②インパルス応答を求める③窓関数を掛け合わせて有限個のインパルス応答を取り出す④因果性を満たすようにする⑤h_フィルタの次数が大きいほど望む周波数特性に近づくが演算量が増えるという欠点もある_通過する周波数帯を制限したフィルタの設計_直線位相ギブス現象", "type": "bar", "xsrc": "masa1357:22:a1fbb4", "ysrc": "masa1357:22:c9bd71" }, { "name": "36_jωt_乗算器_加算器乗算器遅延器_離散時間システムは加算器", "type": "bar", "xsrc": "masa1357:22:1a3c7c", "ysrc": "masa1357:22:898701" }, { "name": "37_2fm_連続信号の標本化の精度に関わる標本化定理やナイキスト周波数などについての内容_サンプル値信号の定義サンプリング周期の性質標本化定理の定義と使い方周波数スペクトルの定義とナイキスト周波数_復元したい信号が標本化定理に従っていればものと信号に完全に復元できる", "type": "bar", "xsrc": "masa1357:22:9b7f92", "ysrc": "masa1357:22:160983" }, { "name": "38_離散フーリエ変換の性質について学んだ_離散フーリエ変換について学んだ_フーリエ変換の性質などを学習したりした_フーリエ変換の性質を学んだ", "type": "bar", "xsrc": "masa1357:22:8c2db9", "ysrc": "masa1357:22:8abf2a" }, { "name": "39_フーリエ級数表現_sincos_複素正弦波による複素フリーエ級数表現_複素フーリエ級数とフーリエ級数はオイラーの公式を用いて互いに変形できる", "type": "bar", "xsrc": "masa1357:22:44c129", "ysrc": "masa1357:22:dceb15" }, { "name": "40_画像について_相関について_相関_画像のエッジに関して", "type": "bar", "xsrc": "masa1357:22:bdc29e", "ysrc": "masa1357:22:779f51" }, { "name": "41_インパルス応答_差分方程式_インパルス応答伝達関数とその計算の手法_インパルス応答伝達関数などについて", "type": "bar", "xsrc": "masa1357:22:1dfaab", "ysrc": "masa1357:22:1678fc" }, { "name": "42_可視化の種類_可視化について_可視化とその手法_可視化とは何かやいろいろな可視化手法について学んだ", "type": "bar", "xsrc": "masa1357:22:e8e0a7", "ysrc": "masa1357:22:715465" }, { "name": "43_研究における倫理と情報の扱い_研究における不正行為がどんなものであるかと九州大学が定めている情報倫理について_研究を行う上で踏まえておくべき倫理情報社会に生きる身として踏まえておくべき情報倫理について学んだ_研究を行うとき", "type": "bar", "xsrc": "masa1357:22:fd9a3c", "ysrc": "masa1357:22:d5b2cc" }, { "name": "44_逆z変換_逆z変換について_逆z変換を解く_逆z変換の求め方に関しての講義", "type": "bar", "xsrc": "masa1357:22:8d0eb4", "ysrc": "masa1357:22:66685d" }, { "name": "45_授業のガイダンス_moodleの使い方授業の進め方_ガイダンス講義の説明_講義の進め方のガイダンス", "type": "bar", "xsrc": "masa1357:22:329c3c", "ysrc": "masa1357:22:5d9cab" }, { "name": "46_ディジタルフィルタのタイプfirフィルタの設計を学んだ_ディジタルフィルタの概要を学んだ_本日はディジタルフィルタについて学んだまたflrフィルタの場合での設計がどのような手順で行われるか学ぶことが重要である_多様な種類のフィルタについてとフィルタを設計する際に用いる窓関数について学習した", "type": "bar", "xsrc": "masa1357:22:15cd4b", "ysrc": "masa1357:22:9bbf2b" }, { "name": "47_音声文章写真などを伝える手段であるデジタル式電話では0と1の並びだけで全ての情報が伝えられるこの数字ひとつをバイトと呼び8ビットで1バイトであるまた情報源符号化とはなるべく端的に表現する方法で元に戻すことが容易である通信路符号化とは伝送中のエラーを自動検出_情報には単位があり0と1を使って送信されるがその基本はモールス信号の頃から変わっていない情報を送信する際には情報源情報の通信路暗号化などを考える必要がある_情報通信機器では様々な情報が0と1とで表されているこのように情報源を符号化することでできるだけ短く表現しそれを一意に素早く戻すことが期待できる_情報通信機器では文字絵写真音などすべての情報が0と1の並びで表される情報伝達の上で情報源符号化はできるだけ短く表現し一意に素早く元に戻すことが求められ通信路符号化は伝送中のエラーを検出訂正を自動で行う", "type": "bar", "xsrc": "masa1357:22:56fe3a", "ysrc": "masa1357:22:608877" }, { "name": "48_標本化定理について学習した_また標本化定理の意味についても学習した_標本化定理の説明とその条件について学んだ_標本化定理の条件について学んだ", "type": "bar", "xsrc": "masa1357:22:fa233a", "ysrc": "masa1357:22:9a6bc5" }, { "name": "49_警戒が大事_ict社会で生き抜くために_ict環境における脅威とその対策_ict技術はテクニックを使わなくても攻撃される可能性がある", "type": "bar", "xsrc": "masa1357:22:62779f", "ysrc": "masa1357:22:185236" }, { "name": "50_非周期関数まで含めた一般的なフーリエ変換とその性質について_非周期関数のフーリエ級数からフーリエ変換を学んだ_非周期関数に適用_非周期関数に対するフーリエ変換について学んだ", "type": "bar", "xsrc": "masa1357:22:86b790", "ysrc": "masa1357:22:9934c3" }, { "name": "51_マージソートと2分探索法_二分深索法とは_重さが分からないコインを分けるアルゴリズムユークリッドの互除法のステップ数が高々2log_2nになる理由の振り返りを行ったヒープソートとマージソートの考え方を学んだこれまでのソートアルゴリズムのまとめをした_二分探索の概要", "type": "bar", "xsrc": "masa1357:22:23f5c9", "ysrc": "masa1357:22:9fcdd5" } ], "layout": { "title": { "text": "Label Distribution per Topic" }, "xaxis": { "title": { "text": "Grades" } }, "yaxis": { "title": { "text": "Count" } }, "sliders": [ { "pad": { "t": 50 }, "steps": [ { "args": [ { "visible": [ true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "-1_グルーピング_logn_nlogn_br" } ], "label": "-1_グルーピング_logn_nlogn_br", "method": "update" }, { "args": [ { "visible": [ false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "0_コモンズ_klogn_発見_ノード" } ], "label": "0_コモンズ_klogn_発見_ノード", "method": "update" }, { "args": [ { "visible": [ false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "1_知識マップの作成_情報科学_情報_知識マップの作製" } ], "label": "1_知識マップの作成_情報科学_情報_知識マップの作製", "method": "update" }, { "args": [ { "visible": [ false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "2_バイ_完全性_en_機密性" } ], "label": "2_バイ_完全性_en_機密性", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "3_計算_アルゴリズム_コンピュータ_問題" } ], "label": "3_計算_アルゴリズム_コンピュータ_問題", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "4_情報源符号化_エントロピー_情報源_が存在する" } ], "label": "4_情報源符号化_エントロピー_情報源_が存在する", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "5_符号語同士がs_2k_ハミング距離_符号語同士が2t" } ], "label": "5_符号語同士がs_2k_ハミング距離_符号語同士が2t", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "6_パターン認識_ベクトル_画像処理_似ている" } ], "label": "6_パターン認識_ベクトル_画像処理_似ている", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "7_距離_類似度_似ている_遠い" } ], "label": "7_距離_類似度_似ている_遠い", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "8_2回_バブルソート_cf_選択ソート" } ], "label": "8_2回_バブルソート_cf_選択ソート", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "9_xy_log2_情報量_曖昧さ" } ], "label": "9_xy_log2_情報量_曖昧さ", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "10_離散時間フーリエ変換と離散フーリエ変換_離散時間フーリエ変換と離散フーリエ変換について_離散時間フーリエ変換_離散時間システム" } ], "label": "10_離散時間フーリエ変換と離散フーリエ変換_離散時間フーリエ変換と離散フーリエ変換について_離散時間フーリエ変換_離散時間システム", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "11_z変換について_z変換の性質逆z変換_z変換の導入_z変換の性質と逆z変換" } ], "label": "11_z変換について_z変換の性質逆z変換_z変換の導入_z変換の性質と逆z変換", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "12_相関_統計的検定_差がない_ax" } ], "label": "12_相関_統計的検定_差がない_ax", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "13_ディジタル信号処理の概要_量子化_符号化_アナログ信号" } ], "label": "13_ディジタル信号処理の概要_量子化_符号化_アナログ信号", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "14_高速フーリエ変換_高速フーリエ変換について_高速フーリエ変換について学んだ_fft" } ], "label": "14_高速フーリエ変換_高速フーリエ変換について_高速フーリエ変換について学んだ_fft", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "15_期末テスト_テスト_確認テスト_テストでした" } ], "label": "15_期末テスト_テスト_確認テスト_テストでした", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "16_弱いai_強いai_特化型ai_人工知能" } ], "label": "16_弱いai_強いai_特化型ai_人工知能", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "17_標本化定理_連続時間信号の標本化について_連続時間信号の標本化_hz" } ], "label": "17_標本化定理_連続時間信号の標本化について_連続時間信号の標本化_hz", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "18_周期信号のフーリエ級数表現_フーリエ変換_周期信号について主にフーリエ級数で表現する方法_周期信号はe" } ], "label": "18_周期信号のフーリエ級数表現_フーリエ変換_周期信号について主にフーリエ級数で表現する方法_周期信号はe", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "19_フーリエ級数からフーリエ変換への拡張_フーリエ級数_最大公約数を表す_フーリエ級数複素フーリエ級数の求め方" } ], "label": "19_フーリエ級数からフーリエ変換への拡張_フーリエ級数_最大公約数を表す_フーリエ級数複素フーリエ級数の求め方", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "20_著作権について_財産権_著作権_70年間著作物を守る" } ], "label": "20_著作権について_財産権_著作権_70年間著作物を守る", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "21_離散時間信号z変換_離散時間信号とz変換について_離散時間信号とz変換_nt" } ], "label": "21_離散時間信号z変換_離散時間信号とz変換について_離散時間信号とz変換_nt", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "22_離散フーリエ変換_フーリエ変換_離散フーリエ変換について_フーリエ変換の復習" } ], "label": "22_離散フーリエ変換_フーリエ変換_離散フーリエ変換について_フーリエ変換の復習", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "23_マージソートと二分探索法について_二分探索法_2分探索について_今回の授業ではヒープソートとマージソートについて学習した" } ], "label": "23_マージソートと二分探索法について_二分探索法_2分探索について_今回の授業ではヒープソートとマージソートについて学習した", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "24_エッジ抽出_エッジ_文字_と白" } ], "label": "24_エッジ抽出_エッジ_文字_と白", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "25_brーmapを用いて振り返りを行った_第七回の大まかな復讐_シンプルな内容でわかりやすかった_全体を通してのまとめをおこなった" } ], "label": "25_brーmapを用いて振り返りを行った_第七回の大まかな復讐_シンプルな内容でわかりやすかった_全体を通してのまとめをおこなった", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "26_ディジタルフィルタについて_ディジタルフィルタ_ディジタルフィルタの設計_フィルタ" } ], "label": "26_ディジタルフィルタについて_ディジタルフィルタ_ディジタルフィルタの設計_フィルタ", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "27_人工知能_ai_人工知能について_機械学習とは" } ], "label": "27_人工知能_ai_人工知能について_機械学習とは", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "28_ガイダンス_ソートの大まかな概要_オリエンテーション_イントロダクション" } ], "label": "28_ガイダンス_ソートの大まかな概要_オリエンテーション_イントロダクション", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "29_nlogn_log_通りがけ順_どの節点の値も自分の親に格納された値以下である" } ], "label": "29_nlogn_log_通りがけ順_どの節点の値も自分の親に格納された値以下である", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "30_改竄_捏造_を行ってはならないまた研究者には科学の進歩と社会の安全安心に貢献し所属する研究機関やクライエントの利益を守る責任がある_研究に携わる者の責任として公正で誠実な発表をする義務がある九州大学でもガイドラインなどが定められておりそれを遵守しながら研究を進めていかなければならない利益相反とは金銭の利益のせいで専門家などの客観的判断が失われること外部から許可なくネットワークにアクセスされることを防ぐために利用を制限するなどの方法がある" } ], "label": "30_改竄_捏造_を行ってはならないまた研究者には科学の進歩と社会の安全安心に貢献し所属する研究機関やクライエントの利益を守る責任がある_研究に携わる者の責任として公正で誠実な発表をする義務がある九州大学でもガイドラインなどが定められておりそれを遵守しながら研究を進めていかなければならない利益相反とは金銭の利益のせいで専門家などの客観的判断が失われること外部から許可なくネットワークにアクセスされることを防ぐために利用を制限するなどの方法がある", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "31_非周期信号のフーリエ変換_非周期信号とフーリエ変換_t0を大きくし周期信号を非周期信号とみなす_非周期信号とフーリエ変換についてフーリエ変換の性質や代表的なフーリエ変換の紹介" } ], "label": "31_非周期信号のフーリエ変換_非周期信号とフーリエ変換_t0を大きくし周期信号を非周期信号とみなす_非周期信号とフーリエ変換についてフーリエ変換の性質や代表的なフーリエ変換の紹介", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "32_差分方程式_2つの線形時不変システムが接続されたシステムの応答は接続が縦列か並列かで変わる_線形時不変システムにインパルス関数を加えた出力インパルス応答がわかると他の信号の場合の出力を求められる_離散時間システムは線形性と時不変性の性質を持っていること" } ], "label": "32_差分方程式_2つの線形時不変システムが接続されたシステムの応答は接続が縦列か並列かで変わる_線形時不変システムにインパルス関数を加えた出力インパルス応答がわかると他の信号の場合の出力を求められる_離散時間システムは線形性と時不変性の性質を持っていること", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "33_フーリエ級数について学んだ_これからの授業で何を学ぶかや計算とは何かについて例を用いて学んだ_今回の授業では数学的要素も混じった問題について取り上げておりより手短な計算で問題を解決することに注力したものでありました_エントロピーについて学んだ高校数学で確率を学んだが今回の授業はより実践的だった" } ], "label": "33_フーリエ級数について学んだ_これからの授業で何を学ぶかや計算とは何かについて例を用いて学んだ_今回の授業では数学的要素も混じった問題について取り上げておりより手短な計算で問題を解決することに注力したものでありました_エントロピーについて学んだ高校数学で確率を学んだが今回の授業はより実践的だった", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "34_標本化について_標本化_標本化定理_サンプリングと標本化定理について" } ], "label": "34_標本化について_標本化_標本化定理_サンプリングと標本化定理について", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "35_firの設計には窓関数が用いられる手順は次のとおりである①所望の振幅特性を求める②インパルス応答を求める③窓関数を掛け合わせて有限個のインパルス応答を取り出す④因果性を満たすようにする⑤h_フィルタの次数が大きいほど望む周波数特性に近づくが演算量が増えるという欠点もある_通過する周波数帯を制限したフィルタの設計_直線位相ギブス現象" } ], "label": "35_firの設計には窓関数が用いられる手順は次のとおりである①所望の振幅特性を求める②インパルス応答を求める③窓関数を掛け合わせて有限個のインパルス応答を取り出す④因果性を満たすようにする⑤h_フィルタの次数が大きいほど望む周波数特性に近づくが演算量が増えるという欠点もある_通過する周波数帯を制限したフィルタの設計_直線位相ギブス現象", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "36_jωt_乗算器_加算器乗算器遅延器_離散時間システムは加算器" } ], "label": "36_jωt_乗算器_加算器乗算器遅延器_離散時間システムは加算器", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "37_2fm_連続信号の標本化の精度に関わる標本化定理やナイキスト周波数などについての内容_サンプル値信号の定義サンプリング周期の性質標本化定理の定義と使い方周波数スペクトルの定義とナイキスト周波数_復元したい信号が標本化定理に従っていればものと信号に完全に復元できる" } ], "label": "37_2fm_連続信号の標本化の精度に関わる標本化定理やナイキスト周波数などについての内容_サンプル値信号の定義サンプリング周期の性質標本化定理の定義と使い方周波数スペクトルの定義とナイキスト周波数_復元したい信号が標本化定理に従っていればものと信号に完全に復元できる", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "38_離散フーリエ変換の性質について学んだ_離散フーリエ変換について学んだ_フーリエ変換の性質などを学習したりした_フーリエ変換の性質を学んだ" } ], "label": "38_離散フーリエ変換の性質について学んだ_離散フーリエ変換について学んだ_フーリエ変換の性質などを学習したりした_フーリエ変換の性質を学んだ", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "39_フーリエ級数表現_sincos_複素正弦波による複素フリーエ級数表現_複素フーリエ級数とフーリエ級数はオイラーの公式を用いて互いに変形できる" } ], "label": "39_フーリエ級数表現_sincos_複素正弦波による複素フリーエ級数表現_複素フーリエ級数とフーリエ級数はオイラーの公式を用いて互いに変形できる", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false, false ] }, { "title": "40_画像について_相関について_相関_画像のエッジに関して" } ], "label": "40_画像について_相関について_相関_画像のエッジに関して", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false, false ] }, { "title": "41_インパルス応答_差分方程式_インパルス応答伝達関数とその計算の手法_インパルス応答伝達関数などについて" } ], "label": "41_インパルス応答_差分方程式_インパルス応答伝達関数とその計算の手法_インパルス応答伝達関数などについて", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false, false ] }, { "title": "42_可視化の種類_可視化について_可視化とその手法_可視化とは何かやいろいろな可視化手法について学んだ" } ], "label": "42_可視化の種類_可視化について_可視化とその手法_可視化とは何かやいろいろな可視化手法について学んだ", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false, false ] }, { "title": "43_研究における倫理と情報の扱い_研究における不正行為がどんなものであるかと九州大学が定めている情報倫理について_研究を行う上で踏まえておくべき倫理情報社会に生きる身として踏まえておくべき情報倫理について学んだ_研究を行うとき" } ], "label": "43_研究における倫理と情報の扱い_研究における不正行為がどんなものであるかと九州大学が定めている情報倫理について_研究を行う上で踏まえておくべき倫理情報社会に生きる身として踏まえておくべき情報倫理について学んだ_研究を行うとき", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false, false ] }, { "title": "44_逆z変換_逆z変換について_逆z変換を解く_逆z変換の求め方に関しての講義" } ], "label": "44_逆z変換_逆z変換について_逆z変換を解く_逆z変換の求め方に関しての講義", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false, false ] }, { "title": "45_授業のガイダンス_moodleの使い方授業の進め方_ガイダンス講義の説明_講義の進め方のガイダンス" } ], "label": "45_授業のガイダンス_moodleの使い方授業の進め方_ガイダンス講義の説明_講義の進め方のガイダンス", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false, false ] }, { "title": "46_ディジタルフィルタのタイプfirフィルタの設計を学んだ_ディジタルフィルタの概要を学んだ_本日はディジタルフィルタについて学んだまたflrフィルタの場合での設計がどのような手順で行われるか学ぶことが重要である_多様な種類のフィルタについてとフィルタを設計する際に用いる窓関数について学習した" } ], "label": "46_ディジタルフィルタのタイプfirフィルタの設計を学んだ_ディジタルフィルタの概要を学んだ_本日はディジタルフィルタについて学んだまたflrフィルタの場合での設計がどのような手順で行われるか学ぶことが重要である_多様な種類のフィルタについてとフィルタを設計する際に用いる窓関数について学習した", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false, false ] }, { "title": "47_音声文章写真などを伝える手段であるデジタル式電話では0と1の並びだけで全ての情報が伝えられるこの数字ひとつをバイトと呼び8ビットで1バイトであるまた情報源符号化とはなるべく端的に表現する方法で元に戻すことが容易である通信路符号化とは伝送中のエラーを自動検出_情報には単位があり0と1を使って送信されるがその基本はモールス信号の頃から変わっていない情報を送信する際には情報源情報の通信路暗号化などを考える必要がある_情報通信機器では様々な情報が0と1とで表されているこのように情報源を符号化することでできるだけ短く表現しそれを一意に素早く戻すことが期待できる_情報通信機器では文字絵写真音などすべての情報が0と1の並びで表される情報伝達の上で情報源符号化はできるだけ短く表現し一意に素早く元に戻すことが求められ通信路符号化は伝送中のエラーを検出訂正を自動で行う" } ], "label": "47_音声文章写真などを伝える手段であるデジタル式電話では0と1の並びだけで全ての情報が伝えられるこの数字ひとつをバイトと呼び8ビットで1バイトであるまた情報源符号化とはなるべく端的に表現する方法で元に戻すことが容易である通信路符号化とは伝送中のエラーを自動検出_情報には単位があり0と1を使って送信されるがその基本はモールス信号の頃から変わっていない情報を送信する際には情報源情報の通信路暗号化などを考える必要がある_情報通信機器では様々な情報が0と1とで表されているこのように情報源を符号化することでできるだけ短く表現しそれを一意に素早く戻すことが期待できる_情報通信機器では文字絵写真音などすべての情報が0と1の並びで表される情報伝達の上で情報源符号化はできるだけ短く表現し一意に素早く元に戻すことが求められ通信路符号化は伝送中のエラーを検出訂正を自動で行う", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false, false ] }, { "title": "48_標本化定理について学習した_また標本化定理の意味についても学習した_標本化定理の説明とその条件について学んだ_標本化定理の条件について学んだ" } ], "label": "48_標本化定理について学習した_また標本化定理の意味についても学習した_標本化定理の説明とその条件について学んだ_標本化定理の条件について学んだ", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false, false ] }, { "title": "49_警戒が大事_ict社会で生き抜くために_ict環境における脅威とその対策_ict技術はテクニックを使わなくても攻撃される可能性がある" } ], "label": "49_警戒が大事_ict社会で生き抜くために_ict環境における脅威とその対策_ict技術はテクニックを使わなくても攻撃される可能性がある", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true, false ] }, { "title": "50_非周期関数まで含めた一般的なフーリエ変換とその性質について_非周期関数のフーリエ級数からフーリエ変換を学んだ_非周期関数に適用_非周期関数に対するフーリエ変換について学んだ" } ], "label": "50_非周期関数まで含めた一般的なフーリエ変換とその性質について_非周期関数のフーリエ級数からフーリエ変換を学んだ_非周期関数に適用_非周期関数に対するフーリエ変換について学んだ", "method": "update" }, { "args": [ { "visible": [ false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, true ] }, { "title": "51_マージソートと2分探索法_二分深索法とは_重さが分からないコインを分けるアルゴリズムユークリッドの互除法のステップ数が高々2log_2nになる理由の振り返りを行ったヒープソートとマージソートの考え方を学んだこれまでのソートアルゴリズムのまとめをした_二分探索の概要" } ], "label": "51_マージソートと2分探索法_二分深索法とは_重さが分からないコインを分けるアルゴリズムユークリッドの互除法のステップ数が高々2log_2nになる理由の振り返りを行ったヒープソートとマージソートの考え方を学んだこれまでのソートアルゴリズムのまとめをした_二分探索の概要", "method": "update" } ], "active": 0 } ], "template": { "data": { "bar": [ { "type": "bar", "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "size": 10, "fillmode": "overlay", "solidity": 0.2 } }, "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" } } ], "pie": [ { "type": "pie", "automargin": true } ], "table": [ { "type": "table", "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } } } ], "carpet": [ { "type": "carpet", "aaxis": { "gridcolor": "white", "linecolor": "white", "endlinecolor": "#2a3f5f", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "gridcolor": "white", "linecolor": "white", "endlinecolor": "#2a3f5f", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" } } ], "mesh3d": [ { "type": "mesh3d", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "contour": [ { "type": "contour", "colorbar": { "ticks": "", "outlinewidth": 0 }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "heatmap": [ { "type": "heatmap", "colorbar": { "ticks": "", "outlinewidth": 0 }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "scatter": [ { "type": "scatter", "fillpattern": { "size": 10, "fillmode": "overlay", "solidity": 0.2 } } ], "surface": [ { "type": "surface", "colorbar": { "ticks": "", "outlinewidth": 0 }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "barpolar": [ { "type": "barpolar", "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "size": 10, "fillmode": "overlay", "solidity": 0.2 } } } ], "heatmapgl": [ { "type": "heatmapgl", "colorbar": { "ticks": "", "outlinewidth": 0 }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "histogram": [ { "type": "histogram", "marker": { "pattern": { "size": 10, "fillmode": "overlay", "solidity": 0.2 } } } ], "parcoords": [ { "line": { "colorbar": { "ticks": "", "outlinewidth": 0 } }, "type": "parcoords" } ], "scatter3d": [ { "line": { "colorbar": { "ticks": "", "outlinewidth": 0 } }, "type": "scatter3d", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scattergl": [ { "type": "scattergl", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "choropleth": [ { "type": "choropleth", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "scattergeo": [ { "type": "scattergeo", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "histogram2d": [ { "type": "histogram2d", "colorbar": { "ticks": "", "outlinewidth": 0 }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "scatterpolar": [ { "type": "scatterpolar", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "contourcarpet": [ { "type": "contourcarpet", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "scattercarpet": [ { "type": "scattercarpet", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scattermapbox": [ { "type": "scattermapbox", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scatterpolargl": [ { "type": "scatterpolargl", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scatterternary": [ { "type": "scatterternary", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "histogram2dcontour": [ { "type": "histogram2dcontour", "colorbar": { "ticks": "", "outlinewidth": 0 }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ] }, "layout": { "geo": { "bgcolor": "white", "showland": true, "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "subunitcolor": "white" }, "font": { "color": "#2a3f5f" }, "polar": { "bgcolor": "#E5ECF6", "radialaxis": { "ticks": "", "gridcolor": "white", "linecolor": "white" }, "angularaxis": { "ticks": "", "gridcolor": "white", "linecolor": "white" } }, "scene": { "xaxis": { "ticks": "", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "zerolinecolor": "white", "showbackground": true, "backgroundcolor": "#E5ECF6" }, "yaxis": { "ticks": "", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "zerolinecolor": "white", "showbackground": true, "backgroundcolor": "#E5ECF6" }, "zaxis": { "ticks": "", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "zerolinecolor": "white", "showbackground": true, "backgroundcolor": "#E5ECF6" } }, "title": { "x": 0.05 }, "xaxis": { "ticks": "", "title": { "standoff": 15 }, "gridcolor": "white", "linecolor": "white", "automargin": true, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "ticks": "", "title": { "standoff": 15 }, "gridcolor": "white", "linecolor": "white", "automargin": true, "zerolinecolor": "white", "zerolinewidth": 2 }, "mapbox": { "style": "light" }, "ternary": { "aaxis": { "ticks": "", "gridcolor": "white", "linecolor": "white" }, "baxis": { "ticks": "", "gridcolor": "white", "linecolor": "white" }, "caxis": { "ticks": "", "gridcolor": "white", "linecolor": "white" }, "bgcolor": "#E5ECF6" }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "coloraxis": { "colorbar": { "ticks": "", "outlinewidth": 0 } }, "hovermode": "closest", "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "hoverlabel": { "align": "left" }, "plot_bgcolor": "#E5ECF6", "paper_bgcolor": "white", "shapedefaults": { "line": { "color": "#2a3f5f" } }, "autotypenumbers": "strict", "annotationdefaults": { "arrowhead": 0, "arrowcolor": "#2a3f5f", "arrowwidth": 1 } } } } }, "height": null, "width": null, "user": { "profile_url": "https://chart-studio.plotly.com/~masa1357", "avatar_url": "https://storage.googleapis.com/plotly-prod-profiles/88.jpg", "background_url": "https://storage.googleapis.com/plotly-prod-profiles/bg-1.jpg", "bio": "", "nickname": "", "website": "", "stream_tokens": null, "feature_set_id": null, "csrf_token": null, "date_joined": "2023-11-30 08:53:28", "mapbox_access_tokens": null, "has_password": null, "username": "masa1357", "email": null, "is_active": null, "readonly": null, "is_dash_creator": null, "dash_created_count": null, "is_chart_creator": null, "charts_created_count": null } }, { "creation_time": "2024-04-10T11:45:30.154012Z", "comments": { "results": [], "count": 0 }, "parented": true, "embed_url": "https://chart-studio.plotly.com/~nawazfarhad/66.embed", "fid": "nawazfarhad:66", "filename": "clfd_pouring_quat_dist", "filetype": "plot", "img_url": "https://storage.googleapis.com/plotly-prod-images/nawazfarhad/66/9_7LHSEUZ5XH4N5G2XOSNAH2X52M1VVD.png", "image_urls": { "default": "https://storage.googleapis.com/plotly-prod-images/nawazfarhad/66/2_A58XMVI755W2RV8G3Z19HVUSPJ3P7G.png", "block-thumb": "https://storage.googleapis.com/plotly-prod-images/nawazfarhad/66/8_08EE4HH9CZ3G7W44AM4PXXPXX8BS61.png", "list-thumb": "https://storage.googleapis.com/plotly-prod-images/nawazfarhad/66/9_7LHSEUZ5XH4N5G2XOSNAH2X52M1VVD.png" }, "api_urls": { "files": "https://api.plotly.com/v2/files/nawazfarhad:66", "plots": "https://api.plotly.com/v2/plots/nawazfarhad:66", "parent": "https://api.plotly.com/v2/folders/home?user=nawazfarhad" }, "owner": "nawazfarhad", "parent": -1, "preview": "", "referencers": [], "references": [], "title": "", "views": 2, "web_url": "https://chart-studio.plotly.com/~nawazfarhad/66/", "world_readable": true, "date_modified": "2024-04-10T11:45:30.165Z", "stars": { "results": [], "count": 0 }, "collaborators": { "results": [], "count": 0 }, "subfolder_count": null, "refresh_interval": null, "organize_view_url": "https://chart-studio.plotly.com/~nawazfarhad/66/", "current_user_permission": "read", "is_theme": null, "is_template": null, "autosize": true, "caption": "", "figure": { "data": [ { "type": "surface", "xsrc": "nawazfarhad:65:b7b1b0", "ysrc": "nawazfarhad:65:478de4", "zsrc": "nawazfarhad:65:c5d049", "opacity": 0.5, "showscale": false, "colorscale": [ [ 0.0, "rgb(247,251,255)" ], [ 0.125, "rgb(222,235,247)" ], [ 0.25, "rgb(198,219,239)" ], [ 0.375, "rgb(158,202,225)" ], [ 0.5, "rgb(107,174,214)" ], [ 0.625, "rgb(66,146,198)" ], [ 0.75, "rgb(33,113,181)" ], [ 0.875, "rgb(8,81,156)" ], [ 1.0, "rgb(8,48,107)" ] ], "showlegend": false }, { "name": "Disturbance", "type": "cone", "usrc": "nawazfarhad:65:03f6c7", "vsrc": "nawazfarhad:65:698c20", "wsrc": "nawazfarhad:65:f5de10", "xsrc": "nawazfarhad:65:a54649", "ysrc": "nawazfarhad:65:fee2e1", "zsrc": "nawazfarhad:65:3ec899", "showscale": false, "colorscale": [ [ 0.0, "rgb(255,255,255)" ], [ 0.125, "rgb(240,240,240)" ], [ 0.25, "rgb(217,217,217)" ], [ 0.375, "rgb(189,189,189)" ], [ 0.5, "rgb(150,150,150)" ], [ 0.625, "rgb(115,115,115)" ], [ 0.75, "rgb(82,82,82)" ], [ 0.875, "rgb(37,37,37)" ], [ 1.0, "rgb(0,0,0)" ] ] }, { "type": "cone", "usrc": "nawazfarhad:65:ea33f0", "vsrc": "nawazfarhad:65:3649b3", "wsrc": "nawazfarhad:65:a485fe", "xsrc": "nawazfarhad:65:035ba1", "ysrc": "nawazfarhad:65:462bf7", "zsrc": "nawazfarhad:65:547843", "showscale": false, "colorscale": [ [ 0.0, "rgb(255,255,255)" ], [ 0.125, "rgb(240,240,240)" ], [ 0.25, "rgb(217,217,217)" ], [ 0.375, "rgb(189,189,189)" ], [ 0.5, "rgb(150,150,150)" ], [ 0.625, "rgb(115,115,115)" ], [ 0.75, "rgb(82,82,82)" ], [ 0.875, "rgb(37,37,37)" ], [ 1.0, "rgb(0,0,0)" ] ], "showlegend": false }, { "type": "cone", "usrc": "nawazfarhad:65:c12652", "vsrc": "nawazfarhad:65:cb3238", "wsrc": "nawazfarhad:65:2cf8a7", "xsrc": "nawazfarhad:65:066e01", "ysrc": "nawazfarhad:65:305464", "zsrc": "nawazfarhad:65:01f147", "showscale": false, "colorscale": [ [ 0.0, "rgb(255,255,255)" ], [ 0.125, "rgb(240,240,240)" ], [ 0.25, "rgb(217,217,217)" ], [ 0.375, "rgb(189,189,189)" ], [ 0.5, "rgb(150,150,150)" ], [ 0.625, "rgb(115,115,115)" ], [ 0.75, "rgb(82,82,82)" ], [ 0.875, "rgb(37,37,37)" ], [ 1.0, "rgb(0,0,0)" ] ], "showlegend": false }, { "line": { "color": "#AB63FA", "width": 10 }, "mode": "lines", "name": "Ref 1", "type": "scatter3d", "xsrc": "nawazfarhad:65:a89abc", "ysrc": "nawazfarhad:65:4b6a5c", "zsrc": "nawazfarhad:65:33fa35" }, { "line": { "color": "#2CA02C", "width": 10 }, "mode": "lines", "name": "Implemented 1", "type": "scatter3d", "xsrc": "nawazfarhad:65:cb8c61", "ysrc": "nawazfarhad:65:c922a1", "zsrc": "nawazfarhad:65:d548fc" }, { "line": { "color": "#FFA15A", "width": 10 }, "mode": "lines", "name": "Ref 2", "type": "scatter3d", "xsrc": "nawazfarhad:65:57c70d", "ysrc": "nawazfarhad:65:56e71a", "zsrc": "nawazfarhad:65:9e3c1f" }, { "line": { "color": "#D62728", "width": 10 }, "mode": "lines", "name": "Implemented 2", "type": "scatter3d", "xsrc": "nawazfarhad:65:b864c3", "ysrc": "nawazfarhad:65:25b8eb", "zsrc": "nawazfarhad:65:49b696" }, { "line": { "color": "#FF6692", "width": 10 }, "mode": "lines", "name": "Ref 3", "type": "scatter3d", "xsrc": "nawazfarhad:65:1b7ced", "ysrc": "nawazfarhad:65:4500e0", "zsrc": "nawazfarhad:65:29f1ff" }, { "line": { "color": "#8C564B", "width": 10 }, "mode": "lines", "name": "Implemented 3", "type": "scatter3d", "xsrc": "nawazfarhad:65:b0f04d", "ysrc": "nawazfarhad:65:204f78", "zsrc": "nawazfarhad:65:976c61" }, { "line": { "color": "red", "width": 5 }, "mode": "markers", "name": "Start", "type": "scatter3d", "xsrc": "nawazfarhad:65:c11660", "ysrc": "nawazfarhad:65:08baf1", "zsrc": "nawazfarhad:65:5174bb", "showlegend": false }, { "line": { "color": "blue", "width": 5 }, "mode": "markers", "name": "End", "type": "scatter3d", "xsrc": "nawazfarhad:65:6e32c0", "ysrc": "nawazfarhad:65:57dab4", "zsrc": "nawazfarhad:65:185a47", "showlegend": false }, { "line": { "color": "red", "width": 5 }, "mode": "markers", "name": "Start", "type": "scatter3d", "xsrc": "nawazfarhad:65:f6956b", "ysrc": "nawazfarhad:65:823ad5", "zsrc": "nawazfarhad:65:d5784c", "showlegend": false }, { "line": { "color": "blue", "width": 5 }, "mode": "markers", "name": "End", "type": "scatter3d", "xsrc": "nawazfarhad:65:ba91dc", "ysrc": "nawazfarhad:65:4dfa2e", "zsrc": "nawazfarhad:65:9c9f26", "showlegend": false }, { "line": { "color": "red", "width": 5 }, "mode": "markers", "name": "Start", "type": "scatter3d", "xsrc": "nawazfarhad:65:b4f579", "ysrc": "nawazfarhad:65:e65ec5", "zsrc": "nawazfarhad:65:471e9c" }, { "line": { "color": "blue", "width": 5 }, "mode": "markers", "name": "End", "type": "scatter3d", "xsrc": "nawazfarhad:65:fe0d76", "ysrc": "nawazfarhad:65:76388a", "zsrc": "nawazfarhad:65:47cad2" }, { "line": { "color": "#2CA02C", "width": 10 }, "mode": "lines", "name": "Predicted 1", "type": "scatter3d", "xsrc": "nawazfarhad:65:d20e5c", "ysrc": "nawazfarhad:65:1004ad", "zsrc": "nawazfarhad:65:266ca5", "showlegend": false }, { "line": { "color": "black", "width": 10 }, "mode": "lines", "name": "Disturbance", "type": "scatter3d", "xsrc": "nawazfarhad:65:08fcb1", "ysrc": "nawazfarhad:65:8c959e", "zsrc": "nawazfarhad:65:67416c" }, { "line": { "color": "#D62728", "width": 10 }, "mode": "lines", "name": "Predicted 2", "type": "scatter3d", "xsrc": "nawazfarhad:65:e6f28d", "ysrc": "nawazfarhad:65:198e14", "zsrc": "nawazfarhad:65:a6df0b", "showlegend": false }, { "line": { "color": "black", "width": 10 }, "mode": "lines", "name": "Disturbance", "type": "scatter3d", "xsrc": "nawazfarhad:65:4d6ead", "ysrc": "nawazfarhad:65:2a027c", "zsrc": "nawazfarhad:65:b3b989", "showlegend": false }, { "line": { "color": "#8C564B", "width": 10 }, "mode": "lines", "name": "Predicted 3", "type": "scatter3d", "xsrc": "nawazfarhad:65:c33398", "ysrc": "nawazfarhad:65:763506", "zsrc": "nawazfarhad:65:26ab34", "showlegend": false }, { "line": { "color": "black", "width": 10 }, "mode": "lines", "name": "Disturbance", "type": "scatter3d", "xsrc": "nawazfarhad:65:1affdc", "ysrc": "nawazfarhad:65:ac36ba", "zsrc": "nawazfarhad:65:775e16", "showlegend": false } ], "layout": { "font": { "size": 18, "family": "Times New Roman" }, "scene": { "aspectmode": "cube" }, "legend": { "itemsizing": "constant" }, "template": { "data": { "bar": [ { "type": "bar", "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "size": 10, "fillmode": "overlay", "solidity": 0.2 } }, "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" } } ], "pie": [ { "type": "pie", "automargin": true } ], "table": [ { "type": "table", "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } } } ], "carpet": [ { "type": "carpet", "aaxis": { "gridcolor": "white", "linecolor": "white", "endlinecolor": "#2a3f5f", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "gridcolor": "white", "linecolor": "white", "endlinecolor": "#2a3f5f", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" } } ], "mesh3d": [ { "type": "mesh3d", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "contour": [ { "type": "contour", "colorbar": { "ticks": "", "outlinewidth": 0 }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "heatmap": [ { "type": "heatmap", "colorbar": { "ticks": "", "outlinewidth": 0 }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "scatter": [ { "type": "scatter", "fillpattern": { "size": 10, "fillmode": "overlay", "solidity": 0.2 } } ], "surface": [ { "type": "surface", "colorbar": { "ticks": "", "outlinewidth": 0 }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "barpolar": [ { "type": "barpolar", "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "size": 10, "fillmode": "overlay", "solidity": 0.2 } } } ], "heatmapgl": [ { "type": "heatmapgl", "colorbar": { "ticks": "", "outlinewidth": 0 }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "histogram": [ { "type": "histogram", "marker": { "pattern": { "size": 10, "fillmode": "overlay", "solidity": 0.2 } } } ], "parcoords": [ { "line": { "colorbar": { "ticks": "", "outlinewidth": 0 } }, "type": "parcoords" } ], "scatter3d": [ { "line": { "colorbar": { "ticks": "", "outlinewidth": 0 } }, "type": "scatter3d", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scattergl": [ { "type": "scattergl", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "choropleth": [ { "type": "choropleth", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "scattergeo": [ { "type": "scattergeo", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "histogram2d": [ { "type": "histogram2d", "colorbar": { "ticks": "", "outlinewidth": 0 }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "scatterpolar": [ { "type": "scatterpolar", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "contourcarpet": [ { "type": "contourcarpet", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "scattercarpet": [ { "type": "scattercarpet", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scattermapbox": [ { "type": "scattermapbox", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scatterpolargl": [ { "type": "scatterpolargl", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scatterternary": [ { "type": "scatterternary", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "histogram2dcontour": [ { "type": "histogram2dcontour", "colorbar": { "ticks": "", "outlinewidth": 0 }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ] }, "layout": { "geo": { "bgcolor": "white", "showland": true, "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "subunitcolor": "white" }, "font": { "color": "#2a3f5f" }, "polar": { "bgcolor": "#E5ECF6", "radialaxis": { "ticks": "", "gridcolor": "white", "linecolor": "white" }, "angularaxis": { "ticks": "", "gridcolor": "white", "linecolor": "white" } }, "scene": { "xaxis": { "ticks": "", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "zerolinecolor": "white", "showbackground": true, "backgroundcolor": "#E5ECF6" }, "yaxis": { "ticks": "", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "zerolinecolor": "white", "showbackground": true, "backgroundcolor": "#E5ECF6" }, "zaxis": { "ticks": "", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "zerolinecolor": "white", "showbackground": true, "backgroundcolor": "#E5ECF6" } }, "title": { "x": 0.05 }, "xaxis": { "ticks": "", "title": { "standoff": 15 }, "gridcolor": "white", "linecolor": "white", "automargin": true, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "ticks": "", "title": { "standoff": 15 }, "gridcolor": "white", "linecolor": "white", "automargin": true, "zerolinecolor": "white", "zerolinewidth": 2 }, "mapbox": { "style": "light" }, "ternary": { "aaxis": { "ticks": "", "gridcolor": "white", "linecolor": "white" }, "baxis": { "ticks": "", "gridcolor": "white", "linecolor": "white" }, "caxis": { "ticks": "", "gridcolor": "white", "linecolor": "white" }, "bgcolor": "#E5ECF6" }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "coloraxis": { "colorbar": { "ticks": "", "outlinewidth": 0 } }, "hovermode": "closest", "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "hoverlabel": { "align": "left" }, "plot_bgcolor": "#E5ECF6", "paper_bgcolor": "white", "shapedefaults": { "line": { "color": "#2a3f5f" } }, "autotypenumbers": "strict", "annotationdefaults": { "arrowhead": 0, "arrowcolor": "#2a3f5f", "arrowwidth": 1 } } } } }, "height": null, "width": null, "user": { "profile_url": "https://chart-studio.plotly.com/~nawazfarhad", "avatar_url": "https://storage.googleapis.com/plotly-prod-profiles/21.jpg", "background_url": "https://storage.googleapis.com/plotly-prod-profiles/bg-3.jpg", "bio": "", "nickname": "", "website": "", "stream_tokens": null, "feature_set_id": null, "csrf_token": null, "date_joined": "2024-03-04 02:22:49", "mapbox_access_tokens": null, "has_password": null, "username": "nawazfarhad", "email": null, "is_active": null, "readonly": null, "is_dash_creator": null, "dash_created_count": null, "is_chart_creator": null, "charts_created_count": null } }, { "creation_time": "2024-04-10T11:41:47.575380Z", "comments": { "results": [], "count": 0 }, "parented": true, "embed_url": "https://chart-studio.plotly.com/~lwaters/1.embed", "fid": "lwaters:1", "filename": "Plot 1", "filetype": "plot", "img_url": "https://storage.googleapis.com/plotly-prod-images/lwaters/1/9_QWKX2VM4NSE31D3QZ4DBX5QSQHULCZ.png", "image_urls": { "default": "https://storage.googleapis.com/plotly-prod-images/lwaters/1/2_918PUFIXFYG9POQHG2X8BTOLI9YH6G.png", "block-thumb": "https://storage.googleapis.com/plotly-prod-images/lwaters/1/8_8599GJ0VYXJMESHDPWYVY1949N56C8.png", "list-thumb": "https://storage.googleapis.com/plotly-prod-images/lwaters/1/9_QWKX2VM4NSE31D3QZ4DBX5QSQHULCZ.png" }, "api_urls": { "files": "https://api.plotly.com/v2/files/lwaters:1", "plots": "https://api.plotly.com/v2/plots/lwaters:1", "parent": "https://api.plotly.com/v2/folders/home?user=lwaters" }, "owner": "lwaters", "parent": -1, "preview": "", "referencers": [], "references": [], "title": "", "views": 1, "web_url": "https://chart-studio.plotly.com/~lwaters/1/", "world_readable": true, "date_modified": "2024-04-10T11:41:47.585Z", "stars": { "results": [], "count": 0 }, "collaborators": { "results": [], "count": 0 }, "subfolder_count": null, "refresh_interval": null, "organize_view_url": "https://chart-studio.plotly.com/~lwaters/1/", "current_user_permission": "read", "is_theme": null, "is_template": false, "autosize": true, "caption": "", "figure": { "data": [ { "meta": { "columnNames": { "x": "A", "y": "B" } }, "mode": "markers", "type": "scatter", "xsrc": "lwaters:0:6ef6f7", "ysrc": "lwaters:0:c740f1" } ], "frames": [], "layout": { "xaxis": { "type": "linear", "range": [ 0.8840930018416207, 3.1159069981583793 ], "autorange": true }, "yaxis": { "type": "linear", "range": [ 0.9388576025744167, 2.0611423974255834 ], "autorange": true }, "autosize": true, "template": { "data": { "bar": [ { "type": "bar", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "table": [ { "type": "table", "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } } } ], "carpet": [ { "type": "carpet", "aaxis": { "gridcolor": "#C8D4E3", "linecolor": "#C8D4E3", "endlinecolor": "#2a3f5f", "minorgridcolor": "#C8D4E3", "startlinecolor": "#2a3f5f" }, "baxis": { "gridcolor": "#C8D4E3", "linecolor": "#C8D4E3", "endlinecolor": "#2a3f5f", "minorgridcolor": "#C8D4E3", "startlinecolor": "#2a3f5f" } } ], "mesh3d": [ { "type": "mesh3d", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "contour": [ { "type": "contour", "colorbar": { "ticks": "", "outlinewidth": 0 }, "autocolorscale": true } ], "heatmap": [ { "type": "heatmap", "colorbar": { "ticks": "", "outlinewidth": 0 }, "autocolorscale": true } ], "scatter": [ { "type": "scatter", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "surface": [ { "type": "surface", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "heatmapgl": [ { "type": "heatmapgl", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "histogram": [ { "type": "histogram", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "parcoords": [ { "line": { "colorbar": { "ticks": "", "outlinewidth": 0 } }, "type": "parcoords" } ], "scatter3d": [ { "type": "scatter3d", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scattergl": [ { "type": "scattergl", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "choropleth": [ { "type": "choropleth", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "scattergeo": [ { "type": "scattergeo", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "histogram2d": [ { "type": "histogram2d", "colorbar": { "ticks": "", "outlinewidth": 0 }, "autocolorscale": true } ], "scatterpolar": [ { "type": "scatterpolar", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "contourcarpet": [ { "type": "contourcarpet", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "scattercarpet": [ { "type": "scattercarpet", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scattermapbox": [ { "type": "scattermapbox", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scatterpolargl": [ { "type": "scatterpolargl", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scatterternary": [ { "type": "scatterternary", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "histogram2dcontour": [ { "type": "histogram2dcontour", "colorbar": { "ticks": "", "outlinewidth": 0 }, "autocolorscale": true } ] }, "layout": { "geo": { "bgcolor": "white", "showland": true, "lakecolor": "white", "landcolor": "white", "showlakes": true, "subunitcolor": "#C8D4E3" }, "font": { "color": "#2a3f5f" }, "polar": { "bgcolor": "white", "radialaxis": { "ticks": "", "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8" }, "angularaxis": { "ticks": "", "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8" } }, "scene": { "xaxis": { "ticks": "", "gridcolor": "#DFE8F3", "gridwidth": 2, "linecolor": "#EBF0F8", "zerolinecolor": "#EBF0F8", "showbackground": true, "backgroundcolor": "white" }, "yaxis": { "ticks": "", "gridcolor": "#DFE8F3", "gridwidth": 2, "linecolor": "#EBF0F8", "zerolinecolor": "#EBF0F8", "showbackground": true, "backgroundcolor": "white" }, "zaxis": { "ticks": "", "gridcolor": "#DFE8F3", "gridwidth": 2, "linecolor": "#EBF0F8", "zerolinecolor": "#EBF0F8", "showbackground": true, "backgroundcolor": "white" } }, "title": { "x": 0.05 }, "xaxis": { "ticks": "", "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8", "automargin": true, "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 }, "yaxis": { "ticks": "", "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8", "automargin": true, "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 }, "ternary": { "aaxis": { "ticks": "", "gridcolor": "#DFE8F3", "linecolor": "#A2B1C6" }, "baxis": { "ticks": "", "gridcolor": "#DFE8F3", "linecolor": "#A2B1C6" }, "caxis": { "ticks": "", "gridcolor": "#DFE8F3", "linecolor": "#A2B1C6" }, "bgcolor": "white" }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#19d3f3", "#e763fa", "#fecb52", "#ffa15a", "#ff6692", "#b6e880" ], "hovermode": "closest", "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0508b8" ], [ 0.0893854748603352, "#1910d8" ], [ 0.1787709497206704, "#3c19f0" ], [ 0.2681564245810056, "#6b1cfb" ], [ 0.3575418994413408, "#981cfd" ], [ 0.44692737430167595, "#bf1cfd" ], [ 0.5363128491620112, "#dd2bfd" ], [ 0.6256983240223464, "#f246fe" ], [ 0.7150837988826816, "#fc67fd" ], [ 0.8044692737430168, "#fe88fc" ], [ 0.8938547486033519, "#fea5fd" ], [ 0.9832402234636871, "#febefe" ], [ 1, "#fec3fe" ] ], "sequentialminus": [ [ 0, "#0508b8" ], [ 0.0893854748603352, "#1910d8" ], [ 0.1787709497206704, "#3c19f0" ], [ 0.2681564245810056, "#6b1cfb" ], [ 0.3575418994413408, "#981cfd" ], [ 0.44692737430167595, "#bf1cfd" ], [ 0.5363128491620112, "#dd2bfd" ], [ 0.6256983240223464, "#f246fe" ], [ 0.7150837988826816, "#fc67fd" ], [ 0.8044692737430168, "#fe88fc" ], [ 0.8938547486033519, "#fea5fd" ], [ 0.9832402234636871, "#febefe" ], [ 1, "#fec3fe" ] ] }, "plot_bgcolor": "white", "paper_bgcolor": "white", "shapedefaults": { "line": { "width": 0 }, "opacity": 0.4, "fillcolor": "#506784" }, "annotationdefaults": { "arrowhead": 0, "arrowcolor": "#506784", "arrowwidth": 1 } }, "themeRef": "PLOTLY_WHITE" } } }, "height": null, "width": null, "user": { "profile_url": "https://chart-studio.plotly.com/~lwaters", "avatar_url": "https://storage.googleapis.com/plotly-prod-profiles/92.jpg", "background_url": "https://storage.googleapis.com/plotly-prod-profiles/bg-5.jpg", "bio": "", "nickname": "", "website": "", "stream_tokens": null, "feature_set_id": null, "csrf_token": null, "date_joined": "2017-12-13 17:52:18", "mapbox_access_tokens": null, "has_password": null, "username": "lwaters", "email": null, "is_active": null, "readonly": null, "is_dash_creator": null, "dash_created_count": null, "is_chart_creator": null, "charts_created_count": null } }, { "creation_time": "2024-04-10T11:35:48.639972Z", "comments": { "results": [], "count": 0 }, "parented": true, "embed_url": "https://chart-studio.plotly.com/~sani21ip21/41.embed", "fid": "sani21ip21:41", "filename": "Setochnai", "filetype": "plot", "img_url": "https://storage.googleapis.com/plotly-prod-images/sani21ip21/41/9_X0FTMU86SLAC1SSMAQZ14G113BJH3N.png", "image_urls": { "default": "https://storage.googleapis.com/plotly-prod-images/sani21ip21/41/2_2FEA48P4PUL77KFC71D4PBC4ZJDUZ9.png", "block-thumb": "https://storage.googleapis.com/plotly-prod-images/sani21ip21/41/8_XAQUUIWALUYXPPIXGXSTVIDPIQYEDU.png", "list-thumb": "https://storage.googleapis.com/plotly-prod-images/sani21ip21/41/9_X0FTMU86SLAC1SSMAQZ14G113BJH3N.png" }, "api_urls": { "files": "https://api.plotly.com/v2/files/sani21ip21:41", "plots": "https://api.plotly.com/v2/plots/sani21ip21:41", "parent": "https://api.plotly.com/v2/folders/home?user=sani21ip21" }, "owner": "sani21ip21", "parent": -1, "preview": "", "referencers": [], "references": [], "title": "", "views": 1, "web_url": "https://chart-studio.plotly.com/~sani21ip21/41/", "world_readable": true, "date_modified": "2024-04-10T11:35:48.650Z", "stars": { "results": [], "count": 0 }, "collaborators": { "results": [], "count": 0 }, "subfolder_count": null, "refresh_interval": null, "organize_view_url": "https://chart-studio.plotly.com/~sani21ip21/41/", "current_user_permission": "read", "is_theme": null, "is_template": false, "autosize": true, "caption": "", "figure": { "data": [ { "meta": { "columnNames": { "x": "A", "y": "B" } }, "mode": "lines", "name": "Угрублённая", "type": "scatter", "xsrc": "sani21ip21:40:edca87", "ysrc": "sani21ip21:40:39fd15" }, { "meta": { "columnNames": { "x": "A", "y": "C" } }, "mode": "lines", "name": "Базовая", "type": "scatter", "xsrc": "sani21ip21:40:edca87", "ysrc": "sani21ip21:40:6bf303", "stackgroup": null }, { "meta": { "columnNames": { "x": "A", "y": "D" } }, "mode": "lines", "name": "Измельчённая", "type": "scatter", "xsrc": "sani21ip21:40:edca87", "ysrc": "sani21ip21:40:53b946", "stackgroup": null } ], "frames": [], "layout": { "xaxis": { "type": "linear", "range": [ 0, 155.799 ], "title": { "text": "r" }, "autorange": true }, "yaxis": { "type": "linear", "range": [ 244.52794444444447, 281.40905555555554 ], "title": { "text": "y" }, "autorange": true }, "autosize": true, "template": { "data": { "bar": [ { "type": "bar", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "table": [ { "type": "table", "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } } } ], "carpet": [ { "type": "carpet", "aaxis": { "gridcolor": "#C8D4E3", "linecolor": "#C8D4E3", "endlinecolor": "#2a3f5f", "minorgridcolor": "#C8D4E3", "startlinecolor": "#2a3f5f" }, "baxis": { "gridcolor": "#C8D4E3", "linecolor": "#C8D4E3", "endlinecolor": "#2a3f5f", "minorgridcolor": "#C8D4E3", "startlinecolor": "#2a3f5f" } } ], "mesh3d": [ { "type": "mesh3d", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "contour": [ { "type": "contour", "colorbar": { "ticks": "", "outlinewidth": 0 }, "autocolorscale": true } ], "heatmap": [ { "type": "heatmap", "colorbar": { "ticks": "", "outlinewidth": 0 }, "autocolorscale": true } ], "scatter": [ { "type": "scatter", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "surface": [ { "type": "surface", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "heatmapgl": [ { "type": "heatmapgl", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "histogram": [ { "type": "histogram", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "parcoords": [ { "line": { "colorbar": { "ticks": "", "outlinewidth": 0 } }, "type": "parcoords" } ], "scatter3d": [ { "type": "scatter3d", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scattergl": [ { "type": "scattergl", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "choropleth": [ { "type": "choropleth", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "scattergeo": [ { "type": "scattergeo", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "histogram2d": [ { "type": "histogram2d", "colorbar": { "ticks": "", "outlinewidth": 0 }, "autocolorscale": true } ], "scatterpolar": [ { "type": "scatterpolar", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "contourcarpet": [ { "type": "contourcarpet", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "scattercarpet": [ { "type": "scattercarpet", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scattermapbox": [ { "type": "scattermapbox", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scatterpolargl": [ { "type": "scatterpolargl", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scatterternary": [ { "type": "scatterternary", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "histogram2dcontour": [ { "type": "histogram2dcontour", "colorbar": { "ticks": "", "outlinewidth": 0 }, "autocolorscale": true } ] }, "layout": { "geo": { "bgcolor": "white", "showland": true, "lakecolor": "white", "landcolor": "white", "showlakes": true, "subunitcolor": "#C8D4E3" }, "font": { "color": "#2a3f5f" }, "polar": { "bgcolor": "white", "radialaxis": { "ticks": "", "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8" }, "angularaxis": { "ticks": "", "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8" } }, "scene": { "xaxis": { "ticks": "", "gridcolor": "#DFE8F3", "gridwidth": 2, "linecolor": "#EBF0F8", "zerolinecolor": "#EBF0F8", "showbackground": true, "backgroundcolor": "white" }, "yaxis": { "ticks": "", "gridcolor": "#DFE8F3", "gridwidth": 2, "linecolor": "#EBF0F8", "zerolinecolor": "#EBF0F8", "showbackground": true, "backgroundcolor": "white" }, "zaxis": { "ticks": "", "gridcolor": "#DFE8F3", "gridwidth": 2, "linecolor": "#EBF0F8", "zerolinecolor": "#EBF0F8", "showbackground": true, "backgroundcolor": "white" } }, "title": { "x": 0.05 }, "xaxis": { "ticks": "", "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8", "automargin": true, "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 }, "yaxis": { "ticks": "", "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8", "automargin": true, "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 }, "ternary": { "aaxis": { "ticks": "", "gridcolor": "#DFE8F3", "linecolor": "#A2B1C6" }, "baxis": { "ticks": "", "gridcolor": "#DFE8F3", "linecolor": "#A2B1C6" }, "caxis": { "ticks": "", "gridcolor": "#DFE8F3", "linecolor": "#A2B1C6" }, "bgcolor": "white" }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#19d3f3", "#e763fa", "#fecb52", "#ffa15a", "#ff6692", "#b6e880" ], "hovermode": "closest", "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0508b8" ], [ 0.0893854748603352, "#1910d8" ], [ 0.1787709497206704, "#3c19f0" ], [ 0.2681564245810056, "#6b1cfb" ], [ 0.3575418994413408, "#981cfd" ], [ 0.44692737430167595, "#bf1cfd" ], [ 0.5363128491620112, "#dd2bfd" ], [ 0.6256983240223464, "#f246fe" ], [ 0.7150837988826816, "#fc67fd" ], [ 0.8044692737430168, "#fe88fc" ], [ 0.8938547486033519, "#fea5fd" ], [ 0.9832402234636871, "#febefe" ], [ 1, "#fec3fe" ] ], "sequentialminus": [ [ 0, "#0508b8" ], [ 0.0893854748603352, "#1910d8" ], [ 0.1787709497206704, "#3c19f0" ], [ 0.2681564245810056, "#6b1cfb" ], [ 0.3575418994413408, "#981cfd" ], [ 0.44692737430167595, "#bf1cfd" ], [ 0.5363128491620112, "#dd2bfd" ], [ 0.6256983240223464, "#f246fe" ], [ 0.7150837988826816, "#fc67fd" ], [ 0.8044692737430168, "#fe88fc" ], [ 0.8938547486033519, "#fea5fd" ], [ 0.9832402234636871, "#febefe" ], [ 1, "#fec3fe" ] ] }, "plot_bgcolor": "white", "paper_bgcolor": "white", "shapedefaults": { "line": { "width": 0 }, "opacity": 0.4, "fillcolor": "#506784" }, "annotationdefaults": { "arrowhead": 0, "arrowcolor": "#506784", "arrowwidth": 1 } }, "themeRef": "PLOTLY_WHITE" } } }, "height": null, "width": null, "user": { "profile_url": "https://chart-studio.plotly.com/~sani21ip21", "avatar_url": "https://storage.googleapis.com/plotly-prod-profiles/10.jpg", "background_url": "https://storage.googleapis.com/plotly-prod-profiles/bg-3.jpg", "bio": "", "nickname": "", "website": "", "stream_tokens": null, "feature_set_id": null, "csrf_token": null, "date_joined": "2023-12-27 17:14:52", "mapbox_access_tokens": null, "has_password": null, "username": "sani21ip21", "email": null, "is_active": null, "readonly": null, "is_dash_creator": null, "dash_created_count": null, "is_chart_creator": null, "charts_created_count": null } }, { "creation_time": "2024-04-10T11:06:30.572172Z", "comments": { "results": [], "count": 0 }, "parented": true, "embed_url": "https://chart-studio.plotly.com/~kavereekayra/1.embed", "fid": "kavereekayra:1", "filename": "full_screen_histogram", "filetype": "plot", "img_url": "https://storage.googleapis.com/plotly-prod-images/kavereekayra/1/9_AANXW3JCJE3YRXY57K9WTGYP9JGC71.png", "image_urls": { "default": "https://storage.googleapis.com/plotly-prod-images/kavereekayra/1/2_9FX8EP52S095DOFAQGRC9TL45NZHDZ.png", "block-thumb": "https://storage.googleapis.com/plotly-prod-images/kavereekayra/1/8_4QQVC244WJNSJ6D2ZKURXTQ6S88HTO.png", "list-thumb": "https://storage.googleapis.com/plotly-prod-images/kavereekayra/1/9_AANXW3JCJE3YRXY57K9WTGYP9JGC71.png" }, "api_urls": { "files": "https://api.plotly.com/v2/files/kavereekayra:1", "plots": "https://api.plotly.com/v2/plots/kavereekayra:1", "parent": "https://api.plotly.com/v2/folders/home?user=kavereekayra" }, "owner": "kavereekayra", "parent": -1, "preview": "", "referencers": [], "references": [], "title": "", "views": 9, "web_url": "https://chart-studio.plotly.com/~kavereekayra/1/", "world_readable": true, "date_modified": "2024-05-03T08:16:42.726Z", "stars": { "results": [], "count": 0 }, "collaborators": { "results": [], "count": 0 }, "subfolder_count": null, "refresh_interval": null, "organize_view_url": "https://chart-studio.plotly.com/~kavereekayra/1/", "current_user_permission": "read", "is_theme": null, "is_template": null, "autosize": true, "caption": "", "figure": { "data": [ { "geo": "geo", "mode": "markers", "name": "", "type": "scattergeo", "latsrc": "kavereekayra:12:c89662", "lonsrc": "kavereekayra:12:e3568a", "marker": { "symbol": "circle", "colorsrc": "kavereekayra:12:2454b0", "coloraxis": "coloraxis" }, "showlegend": false, "legendgroup": "", "hovertextsrc": "kavereekayra:12:a76a35", "hovertemplate": "<b>%{hovertext}</b><br><br>Latitude=%{lat}<br>Longitude=%{lon}<br>Count=%{marker.color}<extra></extra>" } ], "layout": { "geo": { "scope": "asia", "center": {}, "domain": { "x": [ 0.0, 1.0 ], "y": [ 0.0, 1.0 ] }, "countrycolor": "rgb(0,0,0)", "showsubunits": true, "subunitcolor": "rgb(0,0,0)", "showcountries": true }, "legend": { "tracegroupgap": 0 }, "margin": { "t": 60 }, "template": { "data": { "bar": [ { "type": "bar", "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "size": 10, "fillmode": "overlay", "solidity": 0.2 } }, "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" } } ], "pie": [ { "type": "pie", "automargin": true } ], "table": [ { "type": "table", "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } } } ], "carpet": [ { "type": "carpet", "aaxis": { "gridcolor": "white", "linecolor": "white", "endlinecolor": "#2a3f5f", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "gridcolor": "white", "linecolor": "white", "endlinecolor": "#2a3f5f", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" } } ], "mesh3d": [ { "type": "mesh3d", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "contour": [ { "type": "contour", "colorbar": { "ticks": "", "outlinewidth": 0 }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "heatmap": [ { "type": "heatmap", "colorbar": { "ticks": "", "outlinewidth": 0 }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "scatter": [ { "type": "scatter", "fillpattern": { "size": 10, "fillmode": "overlay", "solidity": 0.2 } } ], "surface": [ { "type": "surface", "colorbar": { "ticks": "", "outlinewidth": 0 }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "barpolar": [ { "type": "barpolar", "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "size": 10, "fillmode": "overlay", "solidity": 0.2 } } } ], "heatmapgl": [ { "type": "heatmapgl", "colorbar": { "ticks": "", "outlinewidth": 0 }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "histogram": [ { "type": "histogram", "marker": { "pattern": { "size": 10, "fillmode": "overlay", "solidity": 0.2 } } } ], "parcoords": [ { "line": { "colorbar": { "ticks": "", "outlinewidth": 0 } }, "type": "parcoords" } ], "scatter3d": [ { "line": { "colorbar": { "ticks": "", "outlinewidth": 0 } }, "type": "scatter3d", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scattergl": [ { "type": "scattergl", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "choropleth": [ { "type": "choropleth", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "scattergeo": [ { "type": "scattergeo", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "histogram2d": [ { "type": "histogram2d", "colorbar": { "ticks": "", "outlinewidth": 0 }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "scatterpolar": [ { "type": "scatterpolar", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "contourcarpet": [ { "type": "contourcarpet", "colorbar": { "ticks": "", "outlinewidth": 0 } } ], "scattercarpet": [ { "type": "scattercarpet", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scattermapbox": [ { "type": "scattermapbox", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scatterpolargl": [ { "type": "scatterpolargl", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "scatterternary": [ { "type": "scatterternary", "marker": { "colorbar": { "ticks": "", "outlinewidth": 0 } } } ], "histogram2dcontour": [ { "type": "histogram2dcontour", "colorbar": { "ticks": "", "outlinewidth": 0 }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ] }, "layout": { "geo": { "bgcolor": "white", "showland": true, "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "subunitcolor": "white" }, "font": { "color": "#2a3f5f" }, "polar": { "bgcolor": "#E5ECF6", "radialaxis": { "ticks": "", "gridcolor": "white", "linecolor": "white" }, "angularaxis": { "ticks": "", "gridcolor": "white", "linecolor": "white" } }, "scene": { "xaxis": { "ticks": "", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "zerolinecolor": "white", "showbackground": true, "backgroundcolor": "#E5ECF6" }, "yaxis": { "ticks": "", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "zerolinecolor": "white", "showbackground": true, "backgroundcolor": "#E5ECF6" }, "zaxis": { "ticks": "", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "zerolinecolor": "white", "showbackground": true, "backgroundcolor": "#E5ECF6" } }, "title": { "x": 0.05 }, "xaxis": { "ticks": "", "title": { "standoff": 15 }, "gridcolor": "white", "linecolor": "white", "automargin": true, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "ticks": "", "title": { "standoff": 15 }, "gridcolor": "white", "linecolor": "white", "automargin": true, "zerolinecolor": "white", "zerolinewidth": 2 }, "mapbox": { "style": "light" }, "ternary": { "aaxis": { "ticks": "", "gridcolor": "white", "linecolor": "white" }, "baxis": { "ticks": "", "gridcolor": "white", "linecolor": "white" }, "caxis": { "ticks": "", "gridcolor": "white", "linecolor": "white" }, "bgcolor": "#E5ECF6" }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "coloraxis": { "colorbar": { "ticks": "", "outlinewidth": 0 } }, "hovermode": "closest", "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "hoverlabel": { "align": "left" }, "plot_bgcolor": "#E5ECF6", "paper_bgcolor": "white", "shapedefaults": { "line": { "color": "#2a3f5f" } }, "autotypenumbers": "strict", "annotationdefaults": { "arrowhead": 0, "arrowcolor": "#2a3f5f", "arrowwidth": 1 } } }, "coloraxis": { "cmax": 50, "cmin": 7, "colorbar": { "title": { "text": "Count" } }, "colorscale": [ [ 0.0, "rgb(255,245,240)" ], [ 0.125, "rgb(254,224,210)" ], [ 0.25, "rgb(252,187,161)" ], [ 0.375, "rgb(252,146,114)" ], [ 0.5, "rgb(251,106,74)" ], [ 0.625, "rgb(239,59,44)" ], [ 0.75, "rgb(203,24,29)" ], [ 0.875, "rgb(165,15,21)" ], [ 1.0, "rgb(103,0,13)" ] ] } } }, "height": null, "width": null, "user": { "profile_url": "https://chart-studio.plotly.com/~kavereekayra", "avatar_url": "https://storage.googleapis.com/plotly-prod-profiles/21.jpg", "background_url": "https://storage.googleapis.com/plotly-prod-profiles/bg-8.jpg", "bio": "", "nickname": "", "website": "", "stream_tokens": null, "feature_set_id": null, "csrf_token": null, "date_joined": "2024-04-10 11:05:31", "mapbox_access_tokens": null, "has_password": null, "username": "kavereekayra", "email": null, "is_active": null, "readonly": null, "is_dash_creator": null, "dash_created_count": null, "is_chart_creator": null, "charts_created_count": null } } ] }{ "next": "